三年(2019-2021)高考数学(理)真题分项汇编之专题09三角函数(原卷版)
展开专题09 三角函数
1.【2021·全国高考真题】若,则( )
A. B. C. D.
2.【2021·全国高考真题】下列区间中,函数单调递增的区间是( )
A. B. C. D.
3.【2021·北京高考真题】函数,试判断函数的奇偶性及最大值( )
A.奇函数,最大值为2 B.偶函数,最大值为2
C.奇函数,最大值为 D.偶函数,最大值为
4.【2021·浙江高考真题】已知是互不相同的锐角,则在三个值中,大于的个数的最大值是( )
A.0 B.1 C.2 D.3
5.【2021·全国高考真题(理)】把函数图像上所有点的横坐标缩短到原来的倍,纵坐标不变,再把所得曲线向右平移个单位长度,得到函数的图像,则( )
A. B.
C. D.
6.【2021·全国高考真题】已知为坐标原点,点,,,,则( )
A. B.
C. D.
7.【2020年高考全国Ⅰ卷理数】设函数在[−π,π]的图像大致如下图,则f(x)的最小正周期为
A. B.
C. D.
8.【2020年高考全国Ⅰ卷理数】已知,且,则
A. B.
C. D.
9.【2020年高考全国Ⅱ卷理数】若α为第四象限角,则
A.cos2α>0 B.cos2α<0
C.sin2α>0 D.sin2α<0
10.【2020年高考全国Ⅲ卷理数】已知2tanθ–tan(θ+)=7,则tanθ=
A.–2 B.–1
C.1 D.2
11.【2020年高考北京】2020年3月14日是全球首个国际圆周率日( Day).历史上,求圆周率的方法有多种,与中国传统数学中的“割圆术”相似.数学家阿尔·卡西的方法是:当正整数充分大时,计算单位圆的内接正边形的周长和外切正边形(各边均与圆相切的正边形)的周长,将它们的算术平均数作为的近似值.按照阿尔·卡西的方法,的近似值的表达式是
A. B.
C. D.
12.【2020年新高考全国Ⅰ卷】下图是函数y= sin(ωx+φ)的部分图像,则sin(ωx+φ)=
A. B. C. D.
13.【2019年高考全国Ⅰ卷理数】函数f(x)=在的图像大致为
A. B.
C. D.
14.【2019年高考全国Ⅰ卷理数】关于函数有下述四个结论:
①f(x)是偶函数 ②f(x)在区间(,)单调递增
③f(x)在有4个零点 ④f(x)的最大值为2
其中所有正确结论的编号是
A.①②④ B.②④
C.①④ D.①③
15.【2019年高考全国Ⅱ卷理数】下列函数中,以为周期且在区间(,)单调递增的是
A.f(x)=|cos2x| B.f(x)=|sin2x|
C.f(x)=cos|x| D.f(x)=sin|x|
16.【2019年高考全国Ⅱ卷理数】已知α∈(0,),2sin2α=cos2α+1,则sinα=
A. B.
C. D.
17.【2019年高考全国Ⅲ卷理数】设函数=sin()(>0),已知在有且仅有5个零点,下述四个结论:
①在()有且仅有3个极大值点
②在()有且仅有2个极小值点
③在()单调递增
④的取值范围是[)
其中所有正确结论的编号是
A.①④ B.②③
C.①②③ D.①③④
18.【2019年高考天津卷理数】已知函数是奇函数,将的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为.若的最小正周期为,且,则
A. B.
C. D.
19.【2021·北京高考真题】若点与点关于轴对称,写出一个符合题意的___.
20.【2021·全国高考真题(理)】已知函数的部分图像如图所示,则满足条件的最小正整数x为________.
21.【2020年高考全国III卷理数】16.关于函数f(x)=有如下四个命题:
①f(x)的图像关于y轴对称.
②f(x)的图像关于原点对称.
③f(x)的图像关于直线x=对称.
④f(x)的最小值为2.
其中所有真命题的序号是__________.
22.【2020年高考江苏】已知=,则的值是 ▲ .
23.【2020年高考北京】若函数的最大值为2,则常数的一个取值为________.
24.【2020年高考浙江】已知,则_______,_______.
25.【2020年高考江苏】将函数的图象向右平移个单位长度,则平移后的图象中与y轴最近的对称轴的方程是 ▲ .
26.【2020年新高考全国Ⅰ卷】某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O为圆孔及轮廓圆弧AB所在圆的圆心,A是圆弧AB与直线AG的切点,B是圆弧AB与直线BC的切点,四边形DEFG为矩形,BC⊥DG,垂足为C,tan∠ODC=,,EF=12 cm,DE=2 cm,A到直线DE和EF的距离均为7 cm,圆孔半径为1 cm,则图中阴影部分的面积为________cm2.
27.【2019年高考北京卷理数】函数f(x)=sin22x的最小正周期是__________.
28.【2019年高考江苏卷】已知,则的值是 ▲ .
29.【2019年高考浙江卷】设函数.
(1)已知函数是偶函数,求的值;
(2)求函数的值域.
三年(2019-2021)高考数学(理)真题分项汇编之专题12数列(原卷版): 这是一份三年(2019-2021)高考数学(理)真题分项汇编之专题12数列(原卷版),共7页。试卷主要包含了【2021·全国高考真题等内容,欢迎下载使用。
三年(2019-2021)高考数学(理)真题分项汇编之专题15概率与统计(解答题)(原卷版): 这是一份三年(2019-2021)高考数学(理)真题分项汇编之专题15概率与统计(解答题)(原卷版),共6页。试卷主要包含了【2020年高考山东】等内容,欢迎下载使用。
三年(2019-2021)高考数学(理)真题分项汇编之专题19不等式选讲(原卷版): 这是一份三年(2019-2021)高考数学(理)真题分项汇编之专题19不等式选讲(原卷版),共2页。