所属成套资源:高考第一轮复习数学第二册书课后集训题
2022版新高考数学一轮总复习课后集训:40+空间几何体的结构及其表面积、体积+Word版含解析
展开
这是一份2022版新高考数学一轮总复习课后集训:40+空间几何体的结构及其表面积、体积+Word版含解析,共7页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。
课后限时集训(四十) 空间几何体的结构及其表面积、体积建议用时:25分钟一、选择题1.下列说法中正确的是( )A.斜三棱柱的侧面展开图一定是平行四边形B.水平放置的正方形的直观图有可能是梯形C.一个直四棱柱的正视图和侧视图都是矩形,则该直四棱柱就是长方体D.用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分形成的几何体就是圆台[答案] D2.一个球的表面积是16π,那么这个球的体积为( )A.π B.π C.16π D.24πB [设球的半径为R,则S=4πR2=16π,解得R=2,则球的体积V=πR3=π.]3.《九章算术》是我国古代数学名著,在《九章算术》中将底面为矩形且有一侧棱垂直于底面的四棱锥称为“阳马”.若某“阳马”的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该“阳马”的表面积为( )A.1+ B.1+2C.2+ D.2+2C [由三视图可得该“阳马”的底面是边长为1的正方形,高为1,则表面积为1+2××1×1+2×××1=2+,故选C.]4.用长为8,宽为4的矩形做侧面围成一个圆柱,则圆柱的轴截面的面积为( )A.32 B. C. D.B [若8为底面周长,则圆柱的高为4,此时圆柱的底面直径为,其轴截面的面积为;若4为底面周长,则圆柱的高为8,此时圆柱的底面直径为,其轴截面的面积为.]5.如图,正方体ABCDA1B1C1D1的棱长为1,E为棱DD1上的点,F为AB的中点,则三棱锥B1BFE的体积为( )A. B.C. D.C [由等体积法可知VB1BFE=VEBFB1=S△BB1F·AD=×1××1=.故选C.]6.(多选)(2020·山东潍坊期末)已知等腰直角三角形的直角边长为1,现将该三角形绕其某一边所在直线旋转一周,则所形成的几何体的表面积可以为( )A.π B.(1+)πC.2π D.(2+)πAB [若以直角边所在直线为旋转轴,得到一个底面半径为1、高为1的圆锥,其表面积为π×1+π×1×=(1+)π;若以斜边所在直线为旋转轴,得到两个底面半径为、高为的圆锥所形成的组合体,其表面积为2×π××1=π.故选AB.]7.(2020·全国卷Ⅱ)已知△ABC是面积为的等边三角形,且其顶点都在球O的球面上.若球O的表面积为16π,则O到平面ABC的距离为( )A. B. C.1 D.C [由等边三角形ABC的面积为,得×AB2=,得AB=3,则△ABC的外接圆半径r=×AB=AB=.设球的半径为R,则由球的表面积为16π,得4πR2=16π,得R=2,则球心O到平面ABC的距离d==1,故选C.]8.如图,在多面体ABCDEF中,已知ABCD是边长为1的正方形,且△ADE,△BCF均为正三角形,EF∥AB,EF=2,则该多面体的体积为( )A. B. C. D.A [(分割法)如图,分别过点A,B作EF的垂线,垂足分别为G,H,连接DG,CH,容易求得EG=HF=,AG=GD=BH=HC=,取AD的中点O,连接GO,易得GO=,∴S△AGD=S△BHC=××1=,∴多面体的体积V=V三棱锥EADG+V三棱锥FBCH+V三棱柱AGDBHC=2V三棱锥EADG+V三棱柱AGDBHC=×××2+×1=.故选A.] 二、填空题9.有一块多边形的菜地,它的水平放置的平面图形的斜二测直观图是直角梯形(如图所示),∠ABC=45°,AB=AD=1,DC⊥BC,则这块菜地的面积为________.2+ [如图①,在直观图中,过点A作AE⊥BC,垂足为E.图① 图②在Rt△ABE中,AB=1,∠ABE=45°,∴BE=.而四边形AECD为矩形,AD=1,∴EC=AD=1,∴BC=BE+EC=+1.由此可还原原图形如图②.在原图形中,A′D′=1,A′B′=2,B′C′=+1,且A′D′∥B′C′,A′B′⊥B′C′,∴这块菜地的面积S=(A′D′+B′C′)×A′B′=××2=2+.]10.(2021·全国统一考试模拟演练)圆台上、下底面的圆周都在一个直径为10的球面上,其上、下底面半径分别为4和5,则该圆台的体积为________.61π [截面图如图所示,底面半径为5,圆周直径为10,则圆台的下底面位于圆周的直径上,OC=OB=5,O′C=4,∠OO′C=,则圆台的高为3,V=h(S1++S2)=25π+16π+20π=61π.]11.根据不同的程序,3D打印既能打印实心的几何体模型,也能打印空心的几何体模型.如图所示的空心模型是体积为π cm3的球挖去一个三棱锥PABC后得到的几何体,其中PA⊥AB,BC⊥平面PAB,BC=1 cm.不考虑打印损耗,当用料最省时,AC=________cm.3 [设球的半径为R,由球的体积R3=π,解得R= cm.因为BC⊥平面PAB,所以BC⊥PB,BC⊥AB,BC⊥PA.因为PA⊥AB,AB∩BC=B,所以PA⊥平面ABC,所以PA⊥AC.由BC⊥AB可知,AC为截面圆的直径,故可设AC=x cm(1<x<),取PC的中点O,连接OA,OB(图略),则PO=OC=OA=OB,故O为球心,所以PC=cm.在Rt△PAC中,PA= cm,在Rt△ABC中,AB= cm,所以VPABC=×S△ABC×PA=×××1×=≤=(cm3),当且仅当x2-1=17-x2,即x=3时,等号成立.所以当用料最省时,AC=3 cm.]12.已知某圆锥的母线长为3,底面半径为1,则该圆锥的体积为________.设线段AB为该圆锥底面圆的一条直径,一质点从A出发,沿着该圆锥的侧面运动,到达B点后再沿侧面回到A点,则该质点运动路径的最短长度为________. 6 [该圆锥的高h==2.所以该圆锥的体积V=×π×12×2=π.将圆锥侧面沿母线SA展开,如图所示.因为圆锥底面周长为2π,所以侧面展开后得到的扇形的圆心角∠ASA′=.由题意知点B是侧面展开后得到的扇形中弧AA′的中点,连接AB,A′B,SB,则∠ASB=,可得AB=A′B=AS=3.所以该质点运动路径的最短长度为AB+A′B=6.]1.已知三棱锥SABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此棱锥的体积为( )A. B. C. D.A [由于三棱锥SABC与三棱锥OABC底面都是△ABC,O是SC的中点,因此三棱锥SABC的高是三棱锥OABC高的2倍,所以三棱锥SABC的体积也是三棱锥OABC体积的2倍.在三棱锥OABC中,其棱长都是1,如图所示,S△ABC=×AB2=,高OD==,∴VSABC=2VOABC=2×××=.]2.(多选)已知A,B,C三点均在球O的表面上,AB=BC=CA=2,且球心O到平面ABC的距离等于球半径的,则下列结论正确的是( )A.球O的表面积为6πB.球O的内接正方体的棱长为1C.球O的外切正方体的棱长为D.球O的内接正四面体的棱长为2AD [设球O的半径为r,△ABC的外接圆圆心为O′,半径为R.易得R=.因为球心O到平面ABC的距离等于球O半径的,所以r2-r2=,得r2=.所以球O的表面积S=4πr2=4π×=6π,选项A正确;球O的内接正方体的棱长a满足a=2r,显然选项B不正确;球O的外切正方体的棱长b满足b=2r,显然选项C不正确;球O的内接正四面体的棱长c满足c=r=×=2,选项D正确.故选AD.]
相关试卷
这是一份2022版新高考数学一轮总复习课后集训:1+集合+Word版含解析,共4页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。
这是一份2022版新高考数学一轮总复习课后集训:8+函数及其表示+Word版含解析,共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2022版新高考数学一轮总复习课后集训:43+直线、平面垂直的判定及其性质+Word版含解析,共9页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。