搜索
    上传资料 赚现金
    (教案)正弦型函数的性质与图像学案01
    (教案)正弦型函数的性质与图像学案02
    (教案)正弦型函数的性质与图像学案03
    还剩4页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中数学人教B版 (2019)必修 第三册7.3.2 正弦型函数的性质与图像导学案

    展开
    这是一份高中数学人教B版 (2019)必修 第三册7.3.2 正弦型函数的性质与图像导学案,共7页。学案主要包含了教学目标,教学重难点,教学过程,教师小结等内容,欢迎下载使用。

    1.了解正弦型函数y=Asin(ωx+φ)的实际意义及各参数对图像变化的影响,会求其周期、最值、单调区间等.
    2.会用“图像变换法”作正弦型函数y=Asin(ωx+φ)的图像.
    【教学重难点】
    会求正弦型函数y=Asin(ωx+φ)的周期、最值、单调区间.
    【教学过程】
    一、问题导入
    日常生活中,一般家用电器使用的电流都是交流电流,交流电流i与时间t的关系一般可以写成i=Imsin(wt+φ)的形式.
    显然,上述x与i都是t的函数,那么,这种类型的函数具有什么性质呢?怎样研究这种类型的函数的性质?
    二、新知探究
    1.正弦型函数的图像与性质
    【例1】用五点法作函数y=2sineq \b\lc\(\rc\)(\a\vs4\al\c1(x-\f(π,3)))+3的图像,并写出函数的定义域、值域、周期、频率、初相、最值、单调区间、对称轴方程.
    [思路探究]先确定一个周期内的五个关键点,画出一个周期的图像,左、右扩展可得图像,然后根据图像求性质.
    [解]①列表:
    ②描点连线作出一周期的函数图像.
    ③把此图像左、右扩展即得y=2sineq \b\lc\(\rc\)(\a\vs4\al\c1(x-\f(π,3)))+3的图像.
    由图像可知函数的定义域为R,值域为[1,5],
    周期为T=eq \f(2π,ω)=2π,频率为f=eq \f(1,T)=eq \f(1,2π),初相为φ=-eq \f(π,3),最大值为5,最小值为1.
    令2kπ-eq \f(π,2)≤x-eq \f(π,3)≤2kπ+eq \f(π,2)(k∈Z)得原函数的增区间为eq \b\lc\[\rc\](\a\vs4\al\c1(2kπ-\f(π,6),2kπ+\f(5,6)π))(k∈Z).
    令2kπ+eq \f(π,2)≤x-eq \f(π,3)≤2kπ+eq \f(3,2)π,(k∈Z)得原函数的减区间为eq \b\lc\[\rc\](\a\vs4\al\c1(2kπ+\f(5,6)π,2kπ+\f(11,6)π))(k∈Z).
    令x-eq \f(π,3)=kπ+eq \f(π,2)(k∈Z)得原函数的对称轴方程为x=kπ+eq \f(5,6)π(k∈Z).
    【教师小结】
    (1)用五点法作y=Asin(ωx+φ)的图象,应先令ωx+φ分别为0,eq \f(π,2),π,eq \f(3,2)π,2π,然后解出自变量x的对应值,作出一周期内的图象.
    (2)求y=Asin(ωx+φ)的单调区间时,首先把x的系数化为正值,然后利用整体代换,把ωx+φ代入相应不等式中,求出相应的变量x的范围.
    2.三角函数的图像变换
    【例2】函数y=2sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x+\f(π,3)))-2的图像是由函数y=sin x的图像通过怎样的变换得到的?
    [思路探究]由周期知“横向缩短”,由振幅知“纵向伸长”,并且需要向左、向下移动.
    【教师小结】三角函数图象平移变换问题的分类及解题策略:
    (1)确定函数y=sin x的图象经过平移变换后图象对应的解析式,关键是明确左右平移的方向,按“左加右减”的原则进行;注意平移只对“x”而言.
    (2)已知两个函数解析式判断其图象间的平移关系时,首先要将解析式化为同名三角函数形式,然后再确定平移方向和单位.
    3.求y=Asin(ωx+φ)的解析式
    【例3】如图所示的是函数y=Asin(ωx+φ)eq \b\lc\(\rc\)(\a\vs4\al\c1(|φ|<\f(π,2)))的图像,确定其一个函数解析式.
    [思路探究]解答本题可由最高点、最低点确定A,再由周期确定ω,然后由图像所过的点确定φ.
    [解]由图像,知A=3,T=π,
    又图像过点Aeq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(π,6),0)),
    ∴所求图像由y=3sin 2x的图像向左平移eq \f(π,6)个单位得到,
    ∴y=3sin 2eq \b\lc\(\rc\)(\a\vs4\al\c1(x+\f(π,6))),即y=3sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x+\f(π,3))).
    【教师小结】确定函数y=Asin(ωx+φ)的解析式的关键是φ的确定,常用方法有:
    (1)代入法:把图象上的一个已知点代入(此时A,ω已知或代入图象与x轴的交点求解此时要注意交点在上升区间上还是在下降区间上).
    (2)五点法:确定φ值时,往往以寻找“五点法”中的第一个零点 eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(φ,ω),0))作为突破口.“五点”的ωx+φ的值具体如下:
    “第一点”(即图象上升时与x轴的交点)为ωx+φ=0;
    “第二点”(即图象的“峰点”)为ωx+φ= eq \f(π,2);
    “第三点”(即图象下降时与x轴的交点)为ωx+φ=π;
    “第四点”(即图象的“谷点”)为ωx+φ= eq \f(3π,2);
    “第五点”为ωx+φ=2π.
    4.函数y=Asin(ωx+φ)的对称性
    [探究问题]
    如何求函数y=Asin(ωx+φ)的对称轴方程?
    [提示]与正弦曲线一样,函数y=Asin(ωx+φ)的图像的对称轴通过函数图像的最值点且垂直于x轴.
    函数y=Asin(ωx+φ)对称轴方程的求法:令sin(ωx+φ)=±1,得ωx+φ=kπ+eq \f(π,2)(k∈Z),则x=eq \f(2k+1π-2φ,2ω)(k∈Z),所以函数y=Asin(ωx+φ)的图像的对称轴方程为x=eq \f(2k+1π-2φ,2ω)(k∈Z).
    如何求函数y=Asin(ωx+φ)的对称中心?
    [提示]与正弦曲线一样,函数y=Asin(ωx+φ)图像的对称中心即函数图像与x轴的交点.
    函数y=Asin(ωx+φ)对称中心的求法:令sin(ωx+φ)=0,得ωx+φ=kπ(k∈Z),则x=eq \f(kπ-φ,ω)(k∈Z),所以函数y=Asin(ωx+φ)的图像关于点eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(kπ-φ,ω),0))(k∈Z)成中心对称.
    【例4】已知函数f(x)=sin(2x+φ)(0<φ<π).
    (1)若函数f(x)=sin(2x+φ)为偶函数,求φ的值;
    (2)若函数f(x)=sin(2x+φ)关于x=eq \f(π,8)对称,求出φ的值及f(x)的所有的对称轴方程及对称中心的坐标.
    [思路探究]利用正弦函数的性质解题.
    [解](1)∵f(x)为偶函数,∴φ=kπ+eq \f(π,2),
    又φ∈(0,π),∴φ=eq \f(π,2).
    (2)∵f(x)=sin(2x+φ)关于x=eq \f(π,8)对称,
    ∴f(0)=feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,4))),即sin φ=sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)+φ))=cs φ,
    ∴tan φ=1,φ=kπ+eq \f(π,4)(k∈Z).
    又φ∈(0,π),∴φ=eq \f(π,4),∴f(x)=sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x+\f(π,4))).
    由2x+eq \f(π,4)=kπ+eq \f(π,2)(k∈Z),
    得x=eq \f(kπ,2)+eq \f(π,8)(k∈Z),
    由2x+eq \f(π,4)=kπ,得x=eq \f(kπ,2)-eq \f(π,8)(k∈Z),
    ∴f(x)的对称轴方程为x=eq \f(kπ,2)+eq \f(π,8)(k∈Z),
    对称中心eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(kπ,2)-\f(π,8),0))(k∈Z).
    【教师小结】
    (1)函数y=Asin(ωx+φ)的性质较为综合,主要围绕着函数单调性、最值、奇偶性、图象的对称性等考查.
    (2)有关函数y=Asin(ωx+φ)的性质运用问题,要特别注意整体代换思想的运用.
    三、课堂总结
    1.φ对函数y=sin(x+φ)的图象的影响
    函数y=sin(x+φ),x∈R(其中φ≠0)的图象,可以看作是把正弦曲线上所有的点向左(当φ>0时)或向右(当φ<0时)平行移动|φ|个单位长度而得到.
    2.ω(ω>0)对函数y=sin(ωx+φ)的图象的影响
    函数y=sin(ωx+φ),x∈R(其中ω>0,且ω≠1)的图象,可以看作是把y=sin(x+φ)的图象上所有点的横坐标缩短(当ω>1时)或伸长(当0<ω<1时)到原来的eq \f(1,ω)倍(纵坐标不变)而得到的.
    3.A(A>0)对函数y=Asin(ωx+φ)的图象的影响
    函数y=Asin(ωx+φ)(A>0且A≠1)的图象,可以看作是把y=sin(ωx+φ)的图象上所有点的纵坐标伸长(当A>1时)或缩短(当04.由y=sin x变换得到y=Asin(ωx+φ)(A>0,ω>0)的方法
    (1)先平移后伸缩
    (2)先伸缩后平移
    四、课堂检测
    1.(2019·全国卷Ⅱ)若x1=eq \f(π,4),x2=eq \f(3π,4)是函数f(x)=sin ωx(ω>0)两个相邻的极值点,则ω=( )
    A.2 B.eq \f(3,2) C.1 D.eq \f(1,2)
    A [由题意及函数y=sin ωx的图像与性质可知,
    eq \f(1,2)T=eq \f(3π,4)-eq \f(π,4),∴T=π,∴eq \f(2π,ω)=π,∴ω=2.
    故选A.]
    2.要得到y=3sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x+\f(π,4)))的图像,只需将y=3sin 2x的图像( )
    A.向左平移eq \f(π,4)个单位B.向右平移eq \f(π,4)个单位
    C.向左平移eq \f(π,8)个单位D.向右平移eq \f(π,8)个单位
    C [y=3sin 2x的图像eq \(――――――――→,\s\up26(向左平移\f(π,8)个单位))y=3sin2eq \b\lc\(\rc\)(\a\vs4\al\c1(x+\f(π,8)))
    的图像,即y=3sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x+\f(π,4)))的图像.]
    3.函数y=2sineq \b\lc\(\rc\)(\a\vs4\al\c1(x+\f(π,3)))图像的一条对称轴是________.(填序号)
    ①x=-eq \f(π,2);②x=0;③x=eq \f(π,6);④x=-eq \f(π,6).
    ③ [由正弦函数对称轴可知.
    x+eq \f(π,3)=kπ+eq \f(π,2),k∈Z,
    x=kπ+eq \f(π,6),k∈Z,
    k=0时,x=eq \f(π,6).]
    4.如图是函数y=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的图像的一部分,试求该函数的解析式.
    [解] 由图像可知A=2,T=4×(6-2)=16,ω=eq \f(2π,T)=eq \f(π,8).又x=6时,eq \f(π,8)×6+φ=0,∴φ=-eq \f(3π,4),且|φ|<π.
    ∴所求函数的解析式为y=2sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,8)x-\f(3π,4))).x
    eq \f(π,3)
    eq \f(5,6)π
    eq \f(4,3)π
    eq \f(11,6)π
    eq \f(7,3)π
    x-eq \f(π,3)
    0
    eq \f(π,2)
    π
    eq \f(3,2)π

    y
    3
    5
    3
    1
    3
    相关学案

    数学必修 第三册7.3.2 正弦型函数的性质与图像学案及答案: 这是一份数学必修 第三册7.3.2 正弦型函数的性质与图像学案及答案,共14页。

    人教B版 (2019)必修 第三册7.3.1 正弦函数的性质与图像学案设计: 这是一份人教B版 (2019)必修 第三册7.3.1 正弦函数的性质与图像学案设计,共41页。PPT课件主要包含了正弦函数的性质与图像,非零常数T,每一个,所有周期中,最小的正数,最小正数,正弦函数的图象等内容,欢迎下载使用。

    高中数学人教B版 (2019)必修 第三册7.3.1 正弦函数的性质与图像学案: 这是一份高中数学人教B版 (2019)必修 第三册7.3.1 正弦函数的性质与图像学案,共6页。学案主要包含了教学过程等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map