![上海市2020-2021学年高一上学期期末数学试题人教新课标A版第1页](http://img-preview.51jiaoxi.com/3/3/12138743/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![上海市2020-2021学年高一上学期期末数学试题人教新课标A版第2页](http://img-preview.51jiaoxi.com/3/3/12138743/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![上海市2020-2021学年高一上学期期末数学试题人教新课标A版第3页](http://img-preview.51jiaoxi.com/3/3/12138743/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
上海市2020-2021学年高一上学期期末数学试题人教新课标A版
展开
这是一份上海市2020-2021学年高一上学期期末数学试题人教新课标A版,共8页。试卷主要包含了填空题,解答题,单选题等内容,欢迎下载使用。
1. 已知函数的图象如图所示,则该函数的值域为________.
2. 已知集合,,则________.(结果用区间表示)
3. 已知函数,则它的反函数________________.
4. 已知函数,满足,且当时,,则________.
5. 已知是奇函数,满足,且在区间内是严格增函数,则不等式的解集是________.(结果用区间表示)
6. 已知,函数是定义在上的偶函数,则的值是________.
7. 函数,的最小值是________.
8. 设方程的解为,的解为,则________.
二、解答题
若方程的三个根可以作为一个三角形的三条边的长,则实数的取值范围是________.
三、填空题
对于实数、,定义,设,且关于的方程为恰有三个互不相等的实数根、、,则的取值范围为________.
四、单选题
下列四组函数中,同组的两个函数是相同函数的是( )
A.与
B.与
C.与
D.与
函数f(x)=的零点所在的一个区间是
A.(−2, −1)B.(−1, 0)C.(0, 1)D.(1, 2)
已知,则“”是“”的( )
A.充分非必要条件B.必要非充分条件
C.充要条件D.既非充分又非必要条件
设函数若,,则关于的方程的解的个数为( )
A.1B.2C.3D.4
五、解答题
已知实数,判断函数的奇偶性,并说明理由.
已知命题:幂函数的图象过原点;命题:函数在区间上不是单调函数. 若命题和命题只有一个为真命题,求实数的取值范围.
已知函数.
(1)判断函数的单调性,并证明;
(2)用函数观点解不等式:.
经过多年的运作,“双十一”抢购活动已经演变成为整个电商行业的大型集体促销盛宴.为迎接2018年“双十一”网购狂欢节,某厂家拟投入适当的广告费,对网上所售产品进行促销.经调查测算,该促销产品在“双十一”的销售量p万件与促销费用x万元满足(其中,a为正常数).已知生产该产品还需投入成本万元(不含促销费用),每一件产品的销售价格定为元,假定厂家的生产能力完全能满足市场的销售需求.
(1)将该产品的利润y万元表示为促销费用x万元的函数;
(2)促销费用投入多少万元时,厂家的利润最大?并求出最大利润的值.
定义:如果函数在定义域内给定区间上存在实数,满足,那么称函数是区间上的“平均值函数”,是它的一个均值点.
(1)判断函数是否是区间上的“平均值函数”,并说明理由;
(2)若函数是区间上的“平均值函数”,求实数的取值范围;
(3)若函数是区间上的“平均值函数”,且是函数的一个均值点,求所有满足条件的有序数对.
参考答案与试题解析
上海市2020-2021学年高一上学期期末数学试题
一、填空题
1.
【答案】
[加加){1,3,4)
【考点】
函数的值域及其求法
函数的定义域及其求法
【解析】
由图象可得函数值,得值域.
【解答】
由图象可知函数值有1,3,4,即值域为1,3,4
故答案为:1,3,4
2.
【答案】
I≤加)(1,4)
【考点】
分式不等式的解法
【解析】
先求出集合A,B,再根据交集的定义即可求出.
【解答】
∵ A=x||x−1|
相关试卷
这是一份2020-2021学年上海市松江区高一上学期期末数学试题(解析版),共12页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份2020-2021学年上海市闵行区高一上学期期末数学试题(解析版),共15页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份2020-2021学年上海市建平中学高一上学期期末数学试题(解析版),共18页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。