![专题07动量-三年(2019-2021)高考物理真题分项汇编(解析版)01](http://img-preview.51jiaoxi.com/3/6/12142073/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题07动量-三年(2019-2021)高考物理真题分项汇编(解析版)02](http://img-preview.51jiaoxi.com/3/6/12142073/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题07动量-三年(2019-2021)高考物理真题分项汇编(解析版)03](http://img-preview.51jiaoxi.com/3/6/12142073/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
专题07动量-三年(2019-2021)高考物理真题分项汇编(解析版)
展开专题07 动量
1.(2021·山东卷)如图所示,载有物资的热气球静止于距水平地面H的高处,现将质量为m的物资以相对地面的速度水平投出,落地时物资与热气球的距离为d。已知投出物资后热气球的总质量为M,所受浮力不变,重力加速度为g,不计阻力,以下判断正确的是( )
A.投出物资后热气球做匀加速直线运动
B.投出物资后热气球所受合力大小为
C.
D.
【答案】BC
【解析】
AB.热气球开始携带物资时处于静止状态,所受合外力为0,初动量为0,水平投出重力为的物资瞬间,满足动量守恒定律
则热气球和物资的动量等大反向,热气球获得水平向左的速度,热气球所受合外力恒为,竖直向上,所以热气球做匀加速曲线运动,A错误,B正确;
CD.热气球和物资的运动示意图如图所示
热气球和物资所受合力大小均为,所以热气球在竖直方向上加速度大小为
物资落地过程所用的时间内,根据解得落地时间为
热气球在竖直方向上运动的位移为
热气球和物资在水平方向均做匀速直线运动,水平位移为
根据勾股定理可知热气球和物资的实际位移为
C正确,D错误。
故选BC。
2.(2021·湖南卷)如图(a),质量分别为mA、mB的A、B两物体用轻弹簧连接构成一个系统,外力作用在A上,系统静止在光滑水平面上(B靠墙面),此时弹簧形变量为。撤去外力并开始计时,A、B两物体运动的图像如图(b)所示,表示0到时间内的图线与坐标轴所围面积大小,、分别表示到时间内A、B的图线与坐标轴所围面积大小。A在时刻的速度为。下列说法正确的是( )
A.0到时间内,墙对B的冲量等于mAv0
B. mA > mB
C.B运动后,弹簧的最大形变量等于
D.
【答案】ABD
【解析】
A.由于在0 ~ t1时间内,物体B静止,则对B受力分析有
F墙 = F弹
则墙对B的冲量大小等于弹簧对B的冲量大小,而弹簧既作用于B也作用于A,则可将研究对象转为A,撤去F后A只受弹力作用,则根据动量定理有
I = mAv0(方向向右)
则墙对B的冲量与弹簧对A的冲量大小相等、方向相同,A正确;
B.由a—t图可知t1后弹簧被拉伸,在t2时刻弹簧的拉伸量达到最大,根据牛顿第二定律有
F弹 = mAaA= mBaB
由图可知
aB > aA
则
mB < mA
B正确;
C.由图可得,t1时刻B开始运动,此时A速度为v0,之后AB动量守恒,AB和弹簧整个系统能量守恒,则
可得AB整体的动能不等于0,即弹簧的弹性势能会转化为AB系统的动能,弹簧的形变量小于x,C错误;
D.由a—t图可知t1后B脱离墙壁,且弹簧被拉伸,在t1—t2时间内AB组成的系统动量守恒,且在t2时刻弹簧的拉伸量达到最大,A、B共速,由a—t图像的面积为Dv,在t2时刻AB的速度分别为
,
A、B共速,则
D正确。
故选ABD。
3.(2021·全国卷)水平桌面上,一质量为m的物体在水平恒力F拉动下从静止开始运动,物体通过的路程等于时,速度的大小为,此时撤去F,物体继续滑行的路程后停止运动,重力加速度大小为g,则( )
A.在此过程中F所做的功为
B.在此过中F的冲量大小等于
C.物体与桌面间的动摩擦因数等于
D.F的大小等于物体所受滑动摩擦力大小的2倍
【答案】BC
【解析】
CD.外力撤去前,由牛顿第二定律可知
①
由速度位移公式有
②
外力撤去后,由牛顿第二定律可知
③
由速度位移公式有
④
由①②③④可得,水平恒力
动摩擦因数
滑动摩擦力
可知F的大小等于物体所受滑动摩擦力大小的3倍,
故C正确,D错误;
A.在此过程中,外力F做功为
故A错误;
B.由平均速度公式可知,外力F作用时间
在此过程中,F的冲量大小是
故B正确。
故选BC。
4.(2021·湖南卷)物体的运动状态可用位置和动量描述,称为相,对应图像中的一个点。物体运动状态的变化可用图像中的一条曲线来描述,称为相轨迹。假如一质点沿轴正方向做初速度为零的匀加速直线运动,则对应的相轨迹可能是( )
A.B.C. D.
【答案】D
【解析】
质点沿轴正方向做初速度为零的匀加速直线运动,则有
而动量为
联立可得
动量关于为幂函数,且,故正确的相轨迹图像为D。
故选D。
5.(2021·全国卷)如图,光滑水平地面上有一小车,一轻弹簧的一端与车厢的挡板相连,另一端与滑块相连,滑块与车厢的水平底板间有摩擦。用力向右推动车厢使弹簧压缩,撤去推力时滑块在车厢底板上有相对滑动。在地面参考系(可视为惯性系)中,从撤去推力开始,小车、弹簧和滑块组成的系统( )
A.动量守恒,机械能守恒
B.动量守恒,机械能不守恒
C.动量不守恒,机械能守恒
D.动量不守恒,机械能不守恒
【答案】B
【解析】
因为滑块与车厢水平底板间有摩擦,且撤去推力后滑块在车厢底板上有相对滑动,即摩擦力做功,而水平地面是光滑的;以小车、弹簧和滑块组成的系统,根据动量守恒和机械能守恒的条件可知撤去推力后该系统动量守恒,机械能不守恒。
故选B。
6.(2021·浙江卷)在爆炸实验基地有一发射塔,发射塔正下方的水平地面上安装有声音记录仪。爆炸物自发射塔竖直向上发射,上升到空中最高点时炸裂成质量之比为2:1、初速度均沿水平方向的两个碎块。遥控器引爆瞬开始计时,在5s末和6s末先后记录到从空气中传来的碎块撞击地面的响声。已知声音在空气中的传播速度为340m/s,忽略空气阻力。下列说法正确的是( )
A.两碎块的位移大小之比为1:2 B.爆炸物的爆炸点离地面高度为80m
C.爆炸后质量大的碎块的初速度为68m/s D.爆炸后两碎块落地点之间的水平距离为340m
【答案】B
【解析】
A.爆炸时,水平方向,根据动量守恒定律可知
因两块碎块落地时间相等,则
则
则两碎块的水平位移之比为1:2,而从爆炸开始抛出到落地的位移之比不等于1:2,选项A错误;
B.设两碎片落地时间均为t,由题意可知
解得
t=4s
爆炸物的爆炸点离地面高度为
选项B正确;
CD.爆炸后质量大的碎块的水平位移
质量小的碎块的水平位移
爆炸后两碎块落地点之间的水平距离为340m+680m=1020m
质量大的碎块的初速度为
选项CD错误。
故选B。
7.(2021·浙江卷)如图所示是我国自主研发的全自动无人值守望远镜,它安装在位于南极大陆的昆仑站,电力供应仅为1×103W。若用国际单位制基本单位的符号来表示W,正确的是( )
A.N・s B.N・m/s C.kg・m/s D.kg・m2/s3
【答案】D
【解析】
A.不是国际单位制基本单位,根据冲量的定义可知,是冲量的的单位,A错误;
B.根据功率的计算公式可知功率的单位可以表示为,但不是国际单位制基本单位,B错误;
C.根据动量的定义可知,是动量的单位,C错误;
D.根据可知功率的单位可以表示为,结合可知,则功率得单位,D正确。
故选D。
8.(2021·山东卷)海鸥捕到外壳坚硬的鸟蛤(贝类动物)后,有时会飞到空中将它丢下,利用地面的冲击打碎硬壳。一只海鸥叼着质量的鸟蛤,在的高度、以的水平速度飞行时,松开嘴巴让鸟蛤落到水平地面上。取重力加速度,忽略空气阻力。
(1)若鸟蛤与地面的碰撞时间,弹起速度可忽略,求碰撞过程中鸟蛤受到的平均作用力的大小F;(碰撞过程中不计重力)
(2)在海鸥飞行方向正下方的地面上,有一与地面平齐、长度的岩石,以岩石左端为坐标原点,建立如图所示坐标系。若海鸥水平飞行的高度仍为,速度大小在之间,为保证鸟蛤一定能落到岩石上,求释放鸟蛤位置的x坐标范围。
【答案】(1);(2)或
【解析】
(1)设平抛运动的时间为t,鸟蛤落地前瞬间的速度大小为v。竖直方向分速度大小为,根据运动的合成与分解得
,,
在碰撞过程中,以鸟蛤为研究对象,取速度v的方向为正方向,由动量定理得
联立,代入数据得
(2)若释放鸟蛤的初速度为,设击中岩石左端时,释放点的x坐标为x1,击中右端时,释放点的x坐标为,得
,
联立,代入数据得
,m
若释放鸟蛤时的初速度为,设击中岩石左端时,释放点的x坐标为,击中右端时,释放点的x坐标为,得
,
联立,代入数据得
,
综上得x坐标区间
或
9.(2021·广东卷)算盘是我国古老的计算工具,中心带孔的相同算珠可在算盘的固定导杆上滑动,使用前算珠需要归零,如图所示,水平放置的算盘中有甲、乙两颗算珠未在归零位置,甲靠边框b,甲、乙相隔,乙与边框a相隔,算珠与导杆间的动摩擦因数。现用手指将甲以的初速度拨出,甲、乙碰撞后甲的速度大小为,方向不变,碰撞时间极短且不计,重力加速度g取。
(1)通过计算,判断乙算珠能否滑动到边框a;
(2)求甲算珠从拨出到停下所需的时间。
【答案】(1)能;(2)0.2s
【解析】
(1)由牛顿第二定律可得,甲乙滑动时均有
则甲乙滑动时的加速度大小均为
甲与乙碰前的速度v1,则
解得
v1=0.3m/s
甲乙碰撞时由动量守恒定律
解得碰后乙的速度
v3=0.2m/s
然后乙做减速运动,当速度减为零时则
可知乙恰好能滑到边框a;
(2)甲与乙碰前运动的时间
碰后甲运动的时间
则甲运动的总时间为
10.(2021·浙江卷)如图所示,水平地面上有一高的水平台面,台面上竖直放置倾角的粗糙直轨道、水平光滑直轨道、四分之一圆周光滑细圆管道和半圆形光滑轨道,它们平滑连接,其中管道的半径、圆心在点,轨道的半径、圆心在点,、D、和F点均处在同一水平线上。小滑块从轨道上距台面高为h的P点静止下滑,与静止在轨道上等质量的小球发生弹性碰撞,碰后小球经管道、轨道从F点竖直向下运动,与正下方固定在直杆上的三棱柱G碰撞,碰后速度方向水平向右,大小与碰前相同,最终落在地面上Q点,已知小滑块与轨道间的动摩擦因数,,。
(1)若小滑块的初始高度,求小滑块到达B点时速度的大小;
(2)若小球能完成整个运动过程,求h的最小值;
(3)若小球恰好能过最高点E,且三棱柱G的位置上下可调,求落地点Q与F点的水平距离x的最大值。
【答案】(1)4m/s;(2);(3)0.8m
【解析】
(1)小滑块在轨道上运动
代入数据解得
(2)小球沿轨道运动,在最高点可得
从C点到E点由机械能守恒可得
解得
,
小滑块与小球碰撞后动量守恒,机械能守恒,因此有
,
解得
,
结合(1)问可得
解得h的最小值
(3)设F点到G点的距离为y,小球从E点到G点的运动,由动能定理
由平抛运动可得
,
联立可得水平距离为
由数学知识可得当
取最大,最大值为
11.(2021·浙江卷)如图甲所示,空间站上某种离子推进器由离子源、间距为d的中间有小孔的两平行金属板M、N和边长为L的立方体构成,其后端面P为喷口。以金属板N的中心O为坐标原点,垂直立方体侧面和金属板建立x、y和z坐标轴。M、N板之间存在场强为E、方向沿z轴正方向的匀强电场;立方体内存在磁场,其磁感应强度沿z方向的分量始终为零,沿x和y方向的分量和随时间周期性变化规律如图乙所示,图中可调。氙离子()束从离子源小孔S射出,沿z方向匀速运动到M板,经电场加速进入磁场区域,最后从端面P射出,测得离子经电场加速后在金属板N中心点O处相对推进器的速度为v0。已知单个离子的质量为m、电荷量为,忽略离子间的相互作用,且射出的离子总质量远小于推进器的质量。
(1)求离子从小孔S射出时相对推进器的速度大小vS;
(2)不考虑在磁场突变时运动的离子,调节的值,使得从小孔S射出的离子均能从喷口后端面P射出,求的取值范围;
(3)设离子在磁场中的运动时间远小于磁场变化周期T,单位时间从端面P射出的离子数为n,且。求图乙中时刻离子束对推进器作用力沿z轴方向的分力。
【答案】(1);(2);(3),方向沿z轴负方向
【解析】
(1)离子从小孔S射出运动到金属板N中心点O处,根据动能定理有
解得离子从小孔S射出时相对推进器的速度大小
(2)当磁场仅有沿x方向的分量取最大值时,离子从喷口P的下边缘中点射出,根据几何关系有
根据洛伦兹力提供向心力有
联立解得
当磁场在x和y方向的分量同取最大值时,离子从喷口P边缘交点射出,根据几何关系有
此时;根据洛伦兹力提供向心力有
联立解得
故的取值范围为;
(3)粒子在立方体中运动轨迹剖面图如图所示
由题意根据洛伦兹力提供向心力有
且满足
所以可得
所以可得
离子从端面P射出时,在沿z轴方向根据动量定理有
根据牛顿第三定律可得离子束对推进器作用力大小为
方向沿z轴负方向。
12.(2021·河北卷)如图,一滑雪道由和两段滑道组成,其中段倾角为,段水平,段和段由一小段光滑圆弧连接,一个质量为的背包在滑道顶端A处由静止滑下,若后质量为的滑雪者从顶端以的初速度、的加速度匀加速追赶,恰好在坡底光滑圆弧的水平处追上背包并立即将其拎起,背包与滑道的动摩擦因数为,重力加速度取,,,忽略空气阻力及拎包过程中滑雪者与背包的重心变化,求:
(1)滑道段的长度;
(2)滑雪者拎起背包时这一瞬间的速度。
【答案】(1);(2)
【解析】
(1)设斜面长度为,背包质量为,在斜面上滑行的加速度为,由牛顿第二定律有
解得
滑雪者质量为,初速度为,加速度为,在斜面上滑行时间为,落后时间,则背包的滑行时间为,由运动学公式得
联立解得
或
故可得
(2)背包和滑雪者到达水平轨道时的速度为、,有
滑雪者拎起背包的过程,系统在光滑水平面上外力为零,动量守恒,设共同速度为,有
解得
13.(2021·浙江卷)如图所示,竖直平面内由倾角α=60°的斜面轨道AB、半径均为R的半圆形细圆管轨道BCDE和圆周细圆管轨道EFG构成一游戏装置固定于地面,B、E两处轨道平滑连接,轨道所在平面与竖直墙面垂直。轨道出口处G和圆心O2的连线,以及O2、E、O1和B等四点连成的直线与水平线间的夹角均为θ=30°,G点与竖直墙面的距离。现将质量为m的小球从斜面的某高度h处静止释放。小球只有与竖直墙面间的碰撞可视为弹性碰撞,不计小球大小和所受阻力。
(1)若释放处高度h=h0,当小球第一次运动到圆管最低点C时,求速度大小vc及在此过程中所受合力的冲量的大小和方向;
(2)求小球在圆管内与圆心O1点等高的D点所受弹力FN与h的关系式;
(3)若小球释放后能从原路返回到出发点,高度h应该满足什么条件?
【答案】(1),,水平向左;(2)(h≥R);(3)或
【解析】
(1)机械能守恒
解得
动量定理
方向水平向左
(2)机械能守恒
牛顿第二定律
解得
满足的条件
(3)第1种情况:不滑离轨道原路返回,条件是
第2种情况:与墙面垂直碰撞后原路返回,在进入G之前是平抛运动
其中,,则
得
机械能守恒
h满足的条件
14.(2020·海南卷)太空探测器常装配离子发动机,其基本原理是将被电离的原子从发动机尾部高速喷出,从而为探测器提供推力,若某探测器质量为,离子以的速率(远大于探测器的飞行速率)向后喷出,流量为,则探测器获得的平均推力大小为( )
A. B. C. D.
【答案】C
【解析】
对离子,根据动量定理有
而
解得F=0.09N,故探测器获得的平均推力大小为0.09N,故选C。
15.(2020·北京卷)在同一竖直平面内,3个完全相同的小钢球(1号、2号、3号)悬挂于同一高度;静止时小球恰能接触且悬线平行,如图所示。在下列实验中,悬线始终保持绷紧状态,碰撞均为对心正碰。以下分析正确的是( )
A.将1号移至高度释放,碰撞后,观察到2号静止、3号摆至高度。若2号换成质量不同的小钢球,重复上述实验,3号仍能摆至高度
B.将1、2号一起移至高度释放,碰撞后,观察到1号静止,2、3号一起摆至高度,释放后整个过程机械能和动量都守恒
C.将右侧涂胶的1号移至高度释放,1、2号碰撞后粘在一起,根据机械能守恒,3号仍能摆至高度
D.将1号和右侧涂胶的2号一起移至高度释放,碰撞后,2、3号粘在一起向右运动,未能摆至高度,释放后整个过程机械能和动量都不守恒
【答案】D
【解析】
A.1号球与质量不同的2号球相碰撞后,1号球速度不为零,则2号球获得的动能小于1号球撞2号球前瞬间的动能,所以2号球与3号球相碰撞后,3号球获得的动能也小于1号球撞2号球前瞬间的动能,则3号不可能摆至高度,故A错误;
B.1、2号球释放后,三小球之间的碰撞为弹性碰撞,且三小球组成的系统只有重力做功,所以系统的机械能守恒,但整个过程中,系统所受合外力不为零,所以系统动量不守恒,故B错误;
C.1、2号碰撞后粘在一起,为完全非弹性碰撞,碰撞过程有机械能损失,所以1、2号球再与3号球相碰后,3号球获得的动能不足以使其摆至高度,故C错误;
D.碰撞后,2、3号粘在一起,为完全非弹性碰撞,碰撞过程有机械能损失,且整个过程中,系统所受合外力不为零,所以系统的机械能和动量都不守恒,故D正确。
故选D。
16.(2020·全国卷)甲、乙两个物块在光滑水平桌面上沿同一直线运动,甲追上乙,并与乙发生碰撞,碰撞前后甲、乙的速度随时间的变化如图中实线所示。已知甲的质量为1kg,则碰撞过程两物块损失的机械能为( )
A.3 J B.4 J C.5 J D.6 J
【答案】A
【解析】
由v-t图可知,碰前甲、乙的速度分别为,;碰后甲、乙的速度分别为,,甲、乙两物块碰撞过程中,由动量守恒得
解得
则损失的机械能为
解得
故选A。
17.(2020·全国卷)行驶中的汽车如果发生剧烈碰撞,车内的安全气囊会被弹出并瞬间充满气体。若碰撞后汽车的速度在很短时间内减小为零,关于安全气囊在此过程中的作用,下列说法正确的是( )
A.增加了司机单位面积的受力大小
B.减少了碰撞前后司机动量的变化量
C.将司机的动能全部转换成汽车的动能
D.延长了司机的受力时间并增大了司机的受力面积
【答案】D
【解析】
A.因安全气囊充气后,受力面积增大,故减小了司机单位面积的受力大小,故A错误;
B.有无安全气囊司机初动量和末动量均相同,所以动量的改变量也相同,故B错误;
C.因有安全气囊的存在,司机和安全气囊接触后会有一部分动能转化为气体的内能,不能全部转化成汽车的动能,故C错误;
D.因为安全气囊充气后面积增大,司机的受力面积也增大,在司机挤压气囊作用过程中由于气囊的缓冲故增加了作用时间,故D正确。
故选D。
18.(2020·海南卷)如图,足够长的间距的平行光滑金属导轨MN、PQ固定在水平面内,导轨间存在一个宽度的匀强磁场区域,磁感应强度大小为,方向如图所示.一根质量,阻值的金属棒a以初速度从左端开始沿导轨滑动,穿过磁场区域后,与另一根质量,阻值的原来静置在导轨上的金属棒b发生弹性碰撞,两金属棒始终与导轨垂直且接触良好,导轨电阻不计,则( )
A.金属棒a第一次穿过磁场时做匀减速直线运动
B.金属棒a第一次穿过磁场时回路中有逆时针方向的感应电流
C.金属棒a第一次穿过磁场区域的过程中,金属棒b上产生的焦耳热为
D.金属棒a最终停在距磁场左边界处
【答案】BD
【解析】
A.金属棒a第一次穿过磁场时受到安培力的作用,做减速运动,由于速度减小,感应电流减小,安培力减小,加速度减小,故金属棒a做加速度减小的减速直线运动,故A错误;
B.根据右手定则可知,金属棒a第一次穿过磁场时回路中有逆时针方向的感应电流,故B正确;
C.电路中产生的平均电动势为
平均电流为
金属棒a受到的安培力为
规定向右为正方向,对金属棒a,根据动量定理得
解得对金属棒第一次离开磁场时速度
金属棒a第一次穿过磁场区域的过程中,电路中产生的总热量等于金属棒a机械能的减少量,即
联立并带入数据得
由于两棒电阻相同,两棒产生的焦耳热相同,则金属棒b上产生的焦耳热
故C错误;
D.规定向右为正方向,两金属棒碰撞过程根据动量守恒和机械能守恒得
联立并带入数据解得金属棒a反弹的速度为
设金属棒a最终停在距磁场左边界处,则从反弹进入磁场到停下来的过程,电路中产生的平均电动势为
平均电流为
金属棒a受到的安培力为
规定向右为正方向,对金属棒a,根据动量定理得
联立并带入数据解得
故D正确。
故选BD。
19.(2020·全国卷)水平冰面上有一固定的竖直挡板,一滑冰运动员面对挡板静止在冰面上,他把一质量为4.0 kg的静止物块以大小为5.0 m/s的速度沿与挡板垂直的方向推向挡板,运动员获得退行速度;物块与挡板弹性碰撞,速度反向,追上运动员时,运动员又把物块推向挡板,使其再一次以大小为5.0 m/s的速度与挡板弹性碰撞。总共经过8次这样推物块后,运动员退行速度的大小大于5.0 m/s,反弹的物块不能再追上运动员。不计冰面的摩擦力,该运动员的质量可能为
A.48 kg B.53 kg C.58 kg D.63 kg
【答案】BC
【解析】
设运动员和物块的质量分别为、规定运动员运动的方向为正方向,运动员开始时静止,第一次将物块推出后,运动员和物块的速度大小分别为、,则根据动量守恒定律
解得
物块与弹性挡板撞击后,运动方向与运动员同向,当运动员再次推出物块
解得
第3次推出后
解得
依次类推,第8次推出后,运动员的速度
根据题意可知
解得
第7次运动员的速度一定小于,则
解得
综上所述,运动员的质量满足
AD错误,BC正确。
故选BC。
20.(2020·海南卷)如图,光滑的四分之一圆弧轨道PQ竖直放置,底端与一水平传送带相切,一质量的小物块a从圆弧轨道最高点P由静止释放,到最低点Q时与另一质量小物块b发生弹性正碰(碰撞时间极短)。已知圆弧轨道半径,传送带的长度L=1.25m,传送带以速度顺时针匀速转动,小物体与传送带间的动摩擦因数,。求
(1)碰撞前瞬间小物块a对圆弧轨道的压力大小;
(2)碰后小物块a能上升的最大高度;
(3)小物块b从传送带的左端运动到右端所需要的时间。
【答案】(1)30N;(2)0.2m;(3)1s
【解析】
(1)设小物块a下到圆弧最低点未与小物块b相碰时的速度为,根据机械能守恒定律有
代入数据解得
小物块a在最低点,根据牛顿第二定律有
代入数据解得
根据牛顿第三定律,可知小物块a对圆弧轨道的压力大小为30N。
(2)小物块a与小物块b发生弹性碰撞,根据动量守恒有
根据能量守恒有
联立解得,
小物块a反弹,根据机械能守恒有
解得
(3)小物块b滑上传送带,因,故小物块b先做匀减速运动,根据牛顿第二定律有
解得
则小物块b由2m/s减至1m/s,所走过的位移为
代入数据解得
运动的时间为
代入数据解得
因,故小物块b之后将做匀速运动至右端,则匀速运动的时间为
故小物块b从传送带的左端运动到右端所需要的时间
21.(2020·北京卷)如图甲所示,真空中有一长直细金属导线,与导线同轴放置一半径为的金属圆柱面。假设导线沿径向均匀射出速率相同的电子,已知电子质量为,电荷量为。不考虑出射电子间的相互作用。
(1)可以用以下两种实验方案测量出射电子的初速度:
a.在柱面和导线之间,只加恒定电压;
b.在柱面内,只加与平行的匀强磁场。
当电压为或磁感应强度为时,刚好没有电子到达柱面。分别计算出射电子的初速度。
(2)撤去柱面,沿柱面原位置放置一个弧长为、长度为的金属片,如图乙所示。在该金属片上检测到出射电子形成的电流为,电子流对该金属片的压强为。求单位长度导线单位时间内出射电子的总动能。
【答案】(1)a.,b.;(2)
【解析】
(1)a.在柱面和导线之间,只加恒定电压,粒子刚好没有电子到达柱面,此时速度为零,根据动能定理有
解得
b.在柱面内,只加与平行的匀强磁场,磁感应强度为时,刚好没有电子到达柱面,设粒子的偏转半径为r,根据几何关系有
根据洛伦兹力提供向心力,则有
解得
(2)撤去柱面,设单位时间单位长度射出的电子数为n,则单位时间打在金属片的粒子数
金属片上形成电流为
所以
根据动量定理得金属片上的压强为
解得
故总动能为
22.(2020·江苏卷)一只质量为的乌贼吸入的水,静止在水中。遇到危险时,它在极短时间内把吸入的水向后全部喷出,以的速度向前逃窜。求该乌贼喷出的水的速度大小v。
【答案】
【解析】
乌贼喷水过程,时间较短,内力远大于外力,动量守恒;选取乌贼逃窜的方向为正方向,根据动量守恒定律得
解得喷出水的速度大小为
23.(2020·天津卷)长为l的轻绳上端固定,下端系着质量为的小球A,处于静止状态。A受到一个水平瞬时冲量后在竖直平面内做圆周运动,恰好能通过圆周轨迹的最高点。当A回到最低点时,质量为的小球B与之迎面正碰,碰后A、B粘在一起,仍做圆周运动,并能通过圆周轨迹的最高点。不计空气阻力,重力加速度为g,求
(1)A受到的水平瞬时冲量I的大小;
(2)碰撞前瞬间B的动能至少多大?
【答案】(1);(2)
【解析】
(1)A恰好能通过圆周轨迹的最高点,此时轻绳的拉力刚好为零,设A在最高点时的速度大小为v,由牛顿第二定律,有
①
A从最低点到最高点的过程中机械能守恒,取轨迹最低点处重力势能为零,设A在最低点的速度大小为,有
②
由动量定理,有
③
联立①②③式,得
④
(2)设两球粘在一起时速度大小为,A、B粘在一起后恰能通过圆周轨迹的最高点,需满足
⑤
要达到上述条件,碰后两球速度方向必须与碰前B的速度方向相同,以此方向为正方向,设B碰前瞬间的速度大小为,由动量守恒定律,有
⑥
又
⑦
联立①②⑤⑥⑦式,得碰撞前瞬间B的动能至少为
⑧
24.(2020·山东卷)如图所示,一倾角为的固定斜面的底端安装一弹性挡板,P、Q两物块的质量分别为m和4m,Q静止于斜面上A处。某时刻,P以沿斜面向上的速度v0与Q发生弹性碰撞。Q与斜面间的动摩擦因数等于,设最大静摩擦力等于滑动摩擦力。P与斜面间无摩擦,与挡板之间的碰撞无动能损失。两物块均可以看作质点,斜面足够长,Q的速度减为零之前P不会与之发生碰撞。重力加速度大小为g。
(1)求P与Q第一次碰撞后瞬间各自的速度大小vP1、vQ1;
(2)求第n次碰撞使物块Q上升的高度hn;
(3)求物块Q从A点上升的总高度H;
(4)为保证在Q的速度减为零之前P不会与之发生碰撞,求A点与挡板之间的最小距离s。
【答案】(1) P的速度大小为,Q的速度大小为;(2)(n=1,2,3……);(3);(4)
【解析】
(1)P与Q的第一次碰撞,取P的初速度方向为正方向,由动量守恒定律得
①
由机械能守恒定律得
②
联立①②式得
③
④
故第一次碰撞后P的速度大小为,Q的速度大小为
(2)设第一次碰撞后Q上升的高度为h1,对Q由运动学公式得
⑤
联立①②⑤式得
⑥
设P运动至与Q刚要发生第二次碰撞前的位置时速度为,第一次碰后至第二次碰前,对P由动能定理得
⑦
联立①②⑤⑦式得
⑧
P与Q的第二次碰撞,设碰后P与Q的速度分别为、,由动量守恒定律得
⑨
由机械能守恒定律得
⑩
联立①②⑤⑦⑨⑩式得
⑪
⑫
设第二次碰撞后Q上升的高度为h2,对Q由运动学公式得
⑬
联立①②⑤⑦⑨⑩⑬式得
⑭
设P运动至与Q刚要发生第三次碰撞前的位置时速度为,第二次碰后至第三次碰前,对P由动能定理得
⑮
联立①②⑤⑦⑨⑩⑬⑮式得
⑯
P与Q的第三次碰撞,设碰后P与Q的速度分别为、,由动量守恒定律得
⑰
由机械能守恒定律得
⑱
联立①②⑤⑦⑨⑩⑬⑮⑰⑱式得
⑲
⑳
设第三次碰撞后Q上升的高度为h3,对Q由运动学公式⑩得
㉑
联立①②⑤⑦⑨⑩⑬⑮⑰⑱㉑式得
㉒
总结可知,第n次碰撞后,物块Q上升的高度为
(n=1,2,3……) ㉓
(3)当P、Q达到H时,两物块到此处的速度可视为零,对两物块运动全过程由动能定理得
㉔
解得
㉕
(4)设Q第一次碰撞至速度减为零需要的时间为t1,由运动学公式得
㉖
设P运动到斜面底端时的速度为,需要的时间为t2,由运动学公式得
㉗
㉘
设P从A点到Q第一次碰后速度减为零处匀减速运动的时间为t3
㉙
当A点与挡板之间的距离最小时
㉚
联立㉖㉗㉘㉙㉚式,代入数据得
㉛
25.(2020·浙江卷)某种离子诊断测量简化装置如图所示。竖直平面内存在边界为矩形、方向垂直纸面向外、磁感应强度大小为B的匀强磁场,探测板平行于水平放置,能沿竖直方向缓慢移动且接地。a、b、c三束宽度不计、间距相等的离子束中的离子均以相同速度持续从边界水平射入磁场,b束中的离子在磁场中沿半径为R的四分之一圆弧运动后从下边界竖直向下射出,并打在探测板的右边缘D点。已知每束每秒射入磁场的离子数均为N,离子束间的距离均为,探测板的宽度为,离子质量均为m、电荷量均为q,不计重力及离子间的相互作用。
(1)求离子速度v的大小及c束中的离子射出磁场边界时与H点的距离s;
(2)求探测到三束离子时探测板与边界的最大距离;
(3)若打到探测板上的离子被全部吸收,求离子束对探测板的平均作用力的竖直分量F与板到距离L的关系。
【答案】(1),0.8R;(2);(3)当时:;当时:;当时:
【解析】
(1)离子在磁场中做圆周运动
得粒子的速度大小
令c束中的离子运动轨迹对应的圆心为O,从磁场边界边的Q点射出,则由几何关系可得
,
(2)a束中的离子运动轨迹对应的圆心为O’,从磁场边界边射出时距离H点的距离为x,由几何关系可得
即a、c束中的离子从同一点Q射出,离开磁场的速度分别于竖直方向的夹角为、,由几何关系可得
探测到三束离子,则c束中的离子恰好达到探测板的D点时,探测板与边界的距离最大,
则
(3)a或c束中每个离子动量的竖直分量
当时所有离子都打在探测板上,故单位时间内离子束对探测板的平均作用力
当时, 只有b和c束中离子打在探测板上,则单位时间内离子束对探测板的平均作用力为
当时, 只有b束中离子打在探测板上,则单位时间内离子束对探测板的平均作用力为
26.(2020·浙江卷)小明将如图所示的装置放在水平地面上,该装置由弧形轨道、竖直圆轨道、水平直轨道和倾角的斜轨道平滑连接而成。质量的小滑块从弧形轨道离地高处静止释放。已知,,滑块与轨道和间的动摩擦因数均为,弧形轨道和圆轨道均可视为光滑,忽略空气阻力。
(1)求滑块运动到与圆心O等高的D点时对轨道的压力;
(2)通过计算判断滑块能否冲出斜轨道的末端C点;
(3)若滑下的滑块与静止在水平直轨道上距A点x处的质量为的小滑块相碰,碰后一起运动,动摩擦因数仍为0.25,求它们在轨道上到达的高度h与x之间的关系。(碰撞时间不计,,)
【答案】(1)8N,方向水平向左;(2)不会冲出;(3) ();()
【解析】
(1)机械能守恒定律
牛顿第二定律
牛顿第三定律
方向水平向左
(2)能在斜轨道上到达的最高点为点,功能关系
得
故不会冲出
(3)滑块运动到距A点x处的速度为v,动能定理
碰撞后的速度为,动量守恒定律
设碰撞后滑块滑到斜轨道的高度为h,动能定理
得
27.(2020·全国卷)如图,相距L=11.5m的两平台位于同一水平面内,二者之间用传送带相接。传送带向右匀速运动,其速度的大小v可以由驱动系统根据需要设定。质量m=10 kg的载物箱(可视为质点),以初速度v0=5.0 m/s自左侧平台滑上传送带。载物箱与传送带间的动摩擦因数μ= 0.10,重力加速度取g =10m/s2。
(1)若v=4.0 m/s,求载物箱通过传送带所需的时间;
(2)求载物箱到达右侧平台时所能达到的最大速度和最小速度;
(3)若v=6.0m/s,载物箱滑上传送带后,传送带速度突然变为零。求载物箱从左侧平台向右侧平台运动的过程中,传送带对它的冲量。
【答案】(1)2.75s;(2) , ;(3)0,方向竖直向上
【解析】
(1)传送带的速度为时,载物箱在传送带上先做匀减速运动,设其加速度为a,由牛顿第二定律有:
①
设载物箱滑上传送带后匀减速运动的距离为x1,由运动学公式有
②
联立①②式,代入题给数据得x1=4.5m;③
因此,载物箱在到达右侧平台前,速度先减小至v,然后开始做匀速运动,设载物箱从滑上传送带到离开传送带所用的时间为t1,做匀减速运动所用的时间为t2,由运动学公式有
④
⑤
联立①③④⑤式并代入题给数据有t1=2.75s;⑥
(2)当载物箱滑上传送带后一直做匀减速运动时,到达右侧平台时的速度最小,设为v1,当载物箱滑上传送带后一直做匀加速运动时,到达右侧平台时的速度最大,设为v2.由动能定理有
⑦
⑧
由⑦⑧式并代入题给条件得
,⑨
(3)传送带的速度为时,由于,载物箱先做匀加速运动,加速度大小仍a。设载物箱做匀加速运动通过的距离为x2,所用时间为t3,由运动学公式有
⑩
⑪
联立①⑩⑪式并代入题给数据得
t3=1.0s⑫
x2=5.5m⑬
因此载物箱加速运动1.0s、向右运动5.5m时,达到与传送带相同的速度。此后载物箱与传送带共同匀速运动的时间后,传送带突然停止,设载物箱匀速运动通过的距离为x3有
⑭
由①⑫⑬⑭式可知
即载物箱运动到右侧平台时速度大于零,设为v3,由运动学公式有,
⑮
则
减速运动时间
设载物箱通过传送带的过程中,传送带在水平方向上和竖直方向上对它的冲量分别为I1、I2。由动量定理有
,方向竖直向上
则在整个过程中,传送带给载物箱的冲量
,方向竖直向上
28.(2020·全国卷)某同学用如图所示的实验装置验证动量定理,所用器材包括:气垫导轨、滑块(上方安装有宽度为d的遮光片)、两个与计算机相连接的光电门、砝码盘和砝码等。
实验步骤如下:
(1)开动气泵,调节气垫导轨,轻推滑块,当滑块上的遮光片经过两个光电门的遮光时间________时,可认为气垫导轨水平;
(2)用天平测砝码与砝码盘的总质量m1、滑块(含遮光片)的质量m2;
(3)用细线跨过轻质定滑轮将滑块与砝码盘连接,并让细线水平拉动滑块;
(4)令滑块在砝码和砝码盘的拉动下从左边开始运动,和计算机连接的光电门能测量出遮光片经过A、B两处的光电门的遮光时间Δt1、Δt2及遮光片从A运动到B所用的时间t12;
(5)在遮光片随滑块从A运动到B的过程中,如果将砝码和砝码盘所受重力视为滑块所受拉力,拉力冲量的大小I=________,滑块动量改变量的大小Δp=________;(用题中给出的物理量及重力加速度g表示)
(6)某次测量得到的一组数据为:d=1.000 cm,m1=1.5010-2 kg,m2=0.400 kg,△t1=3.90010-2 s,Δt2=1.27010-2 s,t12=1.50 s,取g=9.80 m/s2。计算可得I=________N·s,Δp=____ kg·m·s-1;(结果均保留3位有效数字)
(7)定义,本次实验δ=________%(保留1位有效数字)。
【答案】大约相等 m1gt12 0.221 0.212 4
【解析】
(1)[1]当经过A,B两个光电门时间相等时,速度相等,此时由于阻力很小,可以认为导轨是水平的。
(5)[2]由I=Ft,知
[3] 由知
(6)[4]代入数值知,冲量
[5]动量改变量
(7)[6]由定义公式可得,本次实验
29.(2019·江苏卷)质量为M的小孩站在质量为m的滑板上,小孩和滑板均处于静止状态,忽略滑板与地面间的摩擦.小孩沿水平方向跃离滑板,离开滑板时的速度大小为v,此时滑板的速度大小为 .
A. B. C. D.
【答案】B
【解析】
设滑板的速度为,小孩和滑板动量守恒得:,解得:,故B正确.
30.(2019·全国卷)最近,我国为“长征九号”研制的大推力新型火箭发动机联试成功,这标志着我国重型运载火箭的研发取得突破性进展.若某次实验中该发动机向后喷射的气体速度约为3 km/s,产生的推力约为4.8×106 N,则它在1 s时间内喷射的气体质量约为
A.1.6×102 kg B.1.6×103 kg C.1.6×105 kg D.1.6×106 kg
【答案】B
【解析】
设该发动机在s时间内,喷射出的气体质量为,根据动量定理,,可知,在1s内喷射出的气体质量,故本题选B.
31.(2019·浙江卷)20世纪人类最伟大的创举之一是开拓了太空的全新领域.现有一艘远离星球在太空中直线飞行的宇宙飞船,为了测量自身质量,启动推进器,测出飞船在短时间Δt内速度的改变为Δv,和飞船受到的推力F(其它星球对它的引力可忽略).飞船在某次航行中,当它飞近一个孤立的星球时,飞船能以速度v,在离星球的较高轨道上绕星球做周期为T的匀速圆周运动.已知星球的半径为R,引力常量用G表示.则宇宙飞船和星球的质量分别是( )
A., B.,
C., D.,
【答案】D
【分析】
根据动量定理求解飞船质量;根据牛顿第二定律与万有引力定律求解星球质量;
【解析】
直线推进时,根据动量定理可得
解得飞船的质量为
绕孤立星球运动时,根据公式
,
解得
故选D。
【点睛】
本题需要注意的是飞船在绕孤立星球运动时,轨道不是星球的半径,切记切记。
32.(2019·海南卷)如图,用不可伸长轻绳将物块a悬挂在O点,初始时,轻绳处于水平拉直状态,现将a由静止释放,当物块a下摆至最低点时,恰好与静止在水平面上的物块b发生弹性碰撞(碰撞时间极短),碰撞后b滑行的最大距离为s,已知b的质量是a的3倍,b与水平面间的动摩擦因数为,重力加速度大小为g,求
(1)碰撞后瞬间物块b速度的大小;
(2)轻绳的长度。
【答案】(1);(2)4μs
【解析】
(1)设a的质量为m,则b的质量为3m,对物块b碰后由动能定理
解得
(2)a球从水平位置摆下的过程
ab碰撞的过程
解得
33.(2019·北京卷)雨滴落到地面的速度通常仅为几米每秒,这与雨滴下落过程中受到空气阻力有关。雨滴间无相互作用且雨滴质量不变,重力加速度为g。
(1)质量为m的雨滴由静止开始,下落高度h时速度为u,求这一过程中克服空气阻力所做的功W;
(2)将雨滴看作半径为r的球体,设其竖直落向地面的过程中所受空气阻力f=kr2v2,其中v是雨滴的速度,k是比例系数;
a.设雨滴的密度为ρ,推导雨滴下落趋近的最大速度vm与半径r的关系式;
b.示意图中画出了半径为r1、r2(r1>r2)的雨滴在空气中无初速下落的v—t图线,其中_____对应半径为r1的雨滴(选填①、②);若不计空气阻力,请在图中画出雨滴无初速下落的v—t图线。
(3)由于大量气体分子在各方向运动的几率相等,其对静止雨滴的作用力为零。将雨滴简化为垂直于运动方向面积为S的圆盘,证明:圆盘以速度v下落时受到的空气阻力f ∝v2(提示:设单位体积内空气分子数为n,空气分子质量为m0)。
【答案】(1);(2)a. ;b. ①;;(3)见解析
【分析】
(1)对雨滴由动能定理解得:雨滴下落h的过程中克服阻做的功;
(2) 雨滴的加速度为0时速度最大;
(3)由动量定理证明
【解析】
(1)对雨滴由动能定理得:
解得:;
(2)a。半径为r的雨滴体积为:,其质量为
当雨滴的重力与阻力相等时速度最大,设最大速度为,则有:
其中
联立以上各式解得:
由可知,雨滴半径越大,最大速度越大,所以①对应半径为的雨滴,
不计空气阻力,雨滴做自由落体运动,图线如图:
(3)设在极短时间内,空气分子与雨滴碰撞,设空气分子的速率为,
在内,空气分子个数为:,其质量为
设向下为正方向,对圆盘下方空气分子由动量定理有:
对圆盘上方空气分子由动量定理有:
圆盘受到的空气阻力为:
联立解得:。
34.(2019·全国卷)静止在水平地面上的两小物块A、B,质量分别为 ,;两者之间有一被压缩的微型弹簧,A与其右侧的竖直墙壁距离,如图所示.某时刻,将压缩的微型弹簧释放,使A、B瞬间分离,两物块获得的动能之和为.释放后,A沿着与墙壁垂直的方向向右运动.A、B与地面之间的动摩擦因数均为.重力加速度取.A、B运动过程中所涉及的碰撞均为弹性碰撞且碰撞时间极短.
(1)求弹簧释放后瞬间A、B速度的大小;
(2)物块A、B中的哪一个先停止?该物块刚停止时A与B之间的距离是多少?
(3)A和B都停止后,A与B之间的距离是多少?
【答案】(1)vA=4.0m/s,vB=1.0m/s;(2)B先停止; 0.50m;(3)0.91m;
【分析】
首先需要理解弹簧释放后瞬间的过程内A、B组成的系统动量守恒,再结合能量关系求解出A、B各自的速度大小;很容易判定A、B都会做匀减速直线运动,并且易知是B先停下,至于A是否已经到达墙处,则需要根据计算确定,结合几何关系可算出第二问结果;再判断A向左运动停下来之前是否与B发生碰撞,也需要通过计算确定,结合空间关系,列式求解即可.
【解析】
(1)设弹簧释放瞬间A和B的速度大小分别为vA、vB,以向右为正,由动量守恒定律和题给条件有
①
②
联立①②式并代入题给数据得
vA=4.0m/s,vB=1.0m/s
(2)A、B两物块与地面间的动摩擦因数相等,因而两者滑动时加速度大小相等,设为a.假设A和B发生碰撞前,已经有一个物块停止,此物块应为弹簧释放后速度较小的B.设从弹簧释放到B停止所需时间为t,B向左运动的路程为sB.,则有
④
⑤
⑥
在时间t内,A可能与墙发生弹性碰撞,碰撞后A将向左运动,碰撞并不改变A的速度大小,所以无论此碰撞是否发生,A在时间t内的路程sA都可表示为
sA=vAt–⑦
联立③④⑤⑥⑦式并代入题给数据得
sA=1.75m,sB=0.25m⑧
这表明在时间t内A已与墙壁发生碰撞,但没有与B发生碰撞,此时A位于出发点右边0.25m处.B位于出发点左边0.25m处,两物块之间的距离s为
s=0.25m+0.25m=0.50m⑨
(3)t时刻后A将继续向左运动,假设它能与静止的B碰撞,碰撞时速度的大小为vA′,由动能定理有
⑩
联立③⑧⑩式并代入题给数据得
故A与B将发生碰撞.设碰撞后A、B的速度分别为vA′′以和vB′′,由动量守恒定律与机械能守恒定律有
联立式并代入题给数据得
这表明碰撞后A将向右运动,B继续向左运动.设碰撞后A向右运动距离为sA′时停止,B向左运动距离为sB′时停止,由运动学公式
由④式及题给数据得
sA′小于碰撞处到墙壁的距离.由上式可得两物块停止后的距离
35.(2019·全国卷)一质量为m=2000 kg的汽车以某一速度在平直公路上匀速行驶.行驶过程中,司机忽然发现前方100 m处有一警示牌.立即刹车.刹车过程中,汽车所受阻力大小随时间变化可简化为图(a)中的图线.图(a)中,0~t1时间段为从司机发现警示牌到采取措施的反应时间(这段时间内汽车所受阻力已忽略,汽车仍保持匀速行驶),t1=0.8 s;t1~t2时间段为刹车系统的启动时间,t2=1.3 s;从t2时刻开始汽车的刹车系统稳定工作,直至汽车停止,已知从t2时刻开始,汽车第1 s内的位移为24 m,第4 s内的位移为1 m.
(1)在图(b)中定性画出从司机发现警示牌到刹车系统稳定工作后汽车运动的v-t图线;
(2)求t2时刻汽车的速度大小及此后的加速度大小;
(3)求刹车前汽车匀速行驶时的速度大小及t1~t2时间内汽车克服阻力做的功;司机发现警示牌到汽车停止,汽车行驶的距离约为多少(以t1~t2时间段始末速度的算术平均值替代这段时间内汽车的平均速度)?
【答案】(1)(2), 28 m/s(3)30 m/s;;87.5 m
【解析】
解:(1)v-t图像如图所示.
(2)设刹车前汽车匀速行驶时的速度大小为v1,则t1时刻的速度也为v1,t2时刻的速度也为v2,在t2时刻后汽车做匀减速运动,设其加速度大小为a,取Δt=1s,设汽车在t2+n-1Δt内的位移为sn,n=1,2,3,….
若汽车在t2+3Δt~t2+4Δt时间内未停止,设它在t2+3Δt时刻的速度为v3,在t2+4Δt时刻的速度为v4,由运动学有
①
②
③
联立①②③式,代入已知数据解得
④
这说明在t2+4Δt时刻前,汽车已经停止.因此,①式不成立.
由于在t2+3Δt~t2+4Δt内汽车停止,由运动学公式
⑤
⑥
联立②⑤⑥,代入已知数据解得
,v2=28 m/s⑦
或者,v2=29.76 m/s⑧
第二种情形下v3小于零,不符合条件,故舍去
(3)设汽车的刹车系统稳定工作时,汽车所受阻力的大小为f1,由牛顿定律有:f1=ma⑨
在t1~t2时间内,阻力对汽车冲量的大小为:⑩
由动量定理有:⑪
由动能定理,在t1~t2时间内,汽车克服阻力做的功为:⑫
联立⑦⑨⑩⑪⑫式,代入已知数据解得
v1=30 m/s⑬
⑭
从司机发现警示牌到汽车停止,汽车行驶的距离s约为
⑮
联立⑦⑬⑮,代入已知数据解得
s=87.5 m⑯
高考物理真题分项汇编(3年(2021-2023)(北京专用)专题07 动量: 这是一份高考物理真题分项汇编(3年(2021-2023)(北京专用)专题07 动量,文件包含高考物理真题分项汇编三年2021-2023专题07动量解析版docx、高考物理真题分项汇编三年2021-2023专题07动量原卷版docx等2份试卷配套教学资源,其中试卷共31页, 欢迎下载使用。
【三年高考真题】最新三年物理高考真题分项汇编——专题07《动量》(2023新高考地区专用): 这是一份【三年高考真题】最新三年物理高考真题分项汇编——专题07《动量》(2023新高考地区专用),文件包含2020-2022高考真题最新三年高考物理真题汇编专题07《动量》新高考地区专用解析版docx、2020-2022高考真题最新三年高考物理真题汇编专题07《动量》新高考地区专用原卷版docx等2份试卷配套教学资源,其中试卷共58页, 欢迎下载使用。
(2020-2022)三年高考物理真题分项汇编(全国通用)专题07 动量 Word版含解析: 这是一份(2020-2022)三年高考物理真题分项汇编(全国通用)专题07 动量 Word版含解析,共61页。试卷主要包含了所示等内容,欢迎下载使用。