终身会员
搜索
    上传资料 赚现金
    22. 1. 3 二次函数y=a〖(x-h)〗^2+k的图象和性质2课时(共3课时)教案
    立即下载
    加入资料篮
    22. 1. 3 二次函数y=a〖(x-h)〗^2+k的图象和性质2课时(共3课时)教案01
    22. 1. 3 二次函数y=a〖(x-h)〗^2+k的图象和性质2课时(共3课时)教案02
    还剩3页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中人教版22.1.3 二次函数y=a(x-h)2+k的图象和性质教案及反思

    展开
    这是一份初中人教版22.1.3 二次函数y=a(x-h)2+k的图象和性质教案及反思,共5页。教案主要包含了巩固练习,师生小结,布置作业等内容,欢迎下载使用。

    2课时 二次函数y=a图象和性质 

    教学目标

    使学生掌握二次函数的图形性质y=a,可以理解抛物线在坐标轴的上位置变化关系。

    知识技能 

    1.会用描点法画二次函数y=a图象

    2.理解抛物线y=a与y=a之间的位置关系.

    3.体验抛物线的平移过程,形成良好的思维方法.

    数学思考与问题解决 

    先画出y=a+k与y=a图象,然后综合对比观察图象,再归纳整理得出图象形状、位置规律. 

    情感态度 

    1. 结合探究函数y=a与y=a图象平移规律的过程继续渗透数形结合思想方法. 

    2.在探究二次函数y=a性质的过程中,成就学生的成功感,进一步培养学生学习数学的兴趣,增强学生学习的自信心. 

    重点难点   

    重点:二次函数y=a图象和性质. 

    难点:把抛物线y=a通过平移后得到抛物线y=a时,确定平移的方向和距离. 

    教学设计  

    活动:提出问题 

    1.抛物线y=+4与y=的位置有什么关系?   

    2.抛物线y=+4的开口方向、对称轴和顶点坐标分别是什么?  

    3.函数y=图象是怎样的一条抛物线?它与抛物线y=有什么关系   呢? 

    (教师出示问题,引导学生回顾回答1、2.教师让学生类比猜想3,由此引出新课并板书课题.) 

    设计意图:在学生回顾旧知识的基础上自然地提出新问题,体现知识间的连贯性.由

    二次函数y=a到y=a+k和y=a,这也体现了探究知识的一种方法. 

    活动二:探究新知 

    1.画图:在同一直角坐标系中,画出下列函数的图象

    y=-,y=-,y=-.    

    2.思考:下列函数,描点画出的图象不对称,是什么原因造成的? 图象的原因,还是取值的原因?   

    y=-  y=-  y=-. 

    结论:三条抛物线的对称轴不同,我们把经过点(-1,0)且与x轴垂直的直线,记x=-1,三条抛物线的对称轴分别是直线x=0,x=-1,x=1;顶点坐标分别为(0,0),(-1,0),(1,0). 

    3.探究:三条抛物线之间的位置关系. 

    (1)从图象上看,这三条抛物线能否经过相互的平移得到?若能,应该怎样平移?

    (2)从所列的表格来看,点的坐标是否具有这种平移关系?

    (3)图象叠放直观演示平移过程.

    4.归纳: 

    抛物线y=a(-h)的平移规律:当h>0时,将抛物线y=a向右平移h单位长度;当h<0时,将抛物线y=a向左平移|h|单位长度. 

    (学生独立画图(坐标系的单位长度一致,画在透明的薄纸上).教师关注:学生画 图时,由于事先不知道每一条抛物线的对称轴,所以在列表和画图时必然会出现所取的点不对称和所画的图象不对称.此时应及时做以下引导:

    (1)是图象本身不对称,还是取的点不对称?

    (2)若使画出的图象对称,应该再取哪个点?教师组织学生小组内讨论、

    思考解决.教师引导:三个同学一组,每人画出一条抛物线(组长分好工,把其余的两

    条抛物线擦去),然后两两叠放在一起,通过平移,观察、思考、总结规律.) 

    设计意图:让学生通过画图,引起认知上的冲突,对出现的现象作进一步的思考

    和探索.通过观察、讨论、思考、小组合作学习,发现抛物线平移规律的同时有利于

    养学生合作学习的能力. 

    活动三:初步应用 

    1(教材练习) 在同一直角坐标系内画出下列二次函数的图象:y=,y= .,y= .,观察三条抛物线的位置关系,并分别指出它们的开口方向、对称轴和顶点. 

    图像如同所示:

     

    抛物线y=向左平移2个单位长度就可得到抛物线y= .

    将抛物线y=向右平移2个单位长度就可得到抛物线y= .

    它们的开口方向都向上;对称  轴分别是y轴、直线x=-2和直线x=2;顶点坐标分别是(0,0),(-2,0),(2,0). 

    (教师投放例1,让学生独立完成后,再小组交流.教师引导学生通过画图(复习)体会规律的运用(验证).教师根据学生画图熟练程度和需要的时间,决定是否要求学生画出,可以根据实际情况而定.) 

    设计意图:通过具体函数图象的观察、分析、猜想、归纳,让学生再次经历探究新

    知的形成过程,加深知识的理解与应用. 

    活动四:巩固练习 

    1.不画出图象,请你说明抛物线y=5与y=5.之间的关系. 

    2.若二次函数y=a.图象经过点(-2,10),求a的值.这个函数有最大

    值还是最小值?是多少? 

    (学生当堂完成,小组互评,教师点评.教师点拨:第2题把(-2,10)代入y=a.解出a即可.当a>0时这个函数有最小值,当a<0时这个函数有最大值.函数的最值就是抛物线顶点的纵坐标.) 

    设计意图:通过引导学生自主合作、探究,培养学生分析问题、解决问题的意识

    能力.通过练习,及时反馈学生学习的情况. 

    活动五:师生小结 

    1.抛物线y=a.与y=a的关系. 

    2.抛物线y=a的开口方向、对称轴、顶点.

    3.y=a(-h)与y=a+k的联系与区别. 

    (教师引导学生谈谈自己所学到的知识、方法和自己的疑惑.) 

    设计意图:梳理学习的内容、方法,形成知识体系,养成系统整理知识的习惯.

     

    活动六:布置作业 

    1.必做题:教材第41页习题22.1第5(2)题. 

    2.选做题:将抛物线y=a向左平移后所得新抛物线的顶点横坐标为-2,且新抛

    物线经过(1,3),求a的值. 

    (教师布置作业.学生按要求课外完成.)

    设计意图:复习巩固,查漏补缺.

     

     

     

    板书设计

    二次函数y=a图象和性质

    一、提出问题            三、初步应用

    二、探究新知               例1(教材练习)

    1.画图                    四、巩固练习

    2.思考                    五、师生小结

    3.探究                    六、布置作业

    4.归纳

     

     

    相关教案

    初中数学1 二次函数教学设计: 这是一份初中数学<a href="/sx/tb_c102698_t8/?tag_id=27" target="_blank">1 二次函数教学设计</a>,共4页。教案主要包含了知识与技能,过程与方法,情感态度,教学重点,教学难点,教学说明,归纳结论等内容,欢迎下载使用。

    初中数学北师大版九年级下册第二章 二次函数2 二次函数的图像与性质第3课时教学设计: 这是一份初中数学北师大版九年级下册第二章 二次函数2 二次函数的图像与性质第3课时教学设计,共5页。教案主要包含了合作探究等内容,欢迎下载使用。

    初中22.1.3 二次函数y=a(x-h)2+k的图象和性质第3课时教学设计: 这是一份初中22.1.3 二次函数y=a(x-h)2+k的图象和性质第3课时教学设计,共4页。教案主要包含了教学目标,教学重难点,教学过程,板书设计,教学反思等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map