终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2021年全国中考数学真题分类汇编--方程与不等式:方程与不等式(组)的综合应用(含不定方程)(解析卷)

    立即下载
    加入资料篮
    2021年全国中考数学真题分类汇编--方程与不等式:方程与不等式(组)的综合应用(含不定方程)(解析卷)第1页
    2021年全国中考数学真题分类汇编--方程与不等式:方程与不等式(组)的综合应用(含不定方程)(解析卷)第2页
    2021年全国中考数学真题分类汇编--方程与不等式:方程与不等式(组)的综合应用(含不定方程)(解析卷)第3页
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021年全国中考数学真题分类汇编--方程与不等式:方程与不等式(组)的综合应用(含不定方程)(解析卷)

    展开

    这是一份2021年全国中考数学真题分类汇编--方程与不等式:方程与不等式(组)的综合应用(含不定方程)(解析卷),共18页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
    2021全国中考真题分类汇编(方程与不等式)
    ----方程与不等式(组)的综合应用(含不定方程)
    一、选择题
    1. (2021•重庆市A)若关于x的一元一次不等式组的解集为,且关于y的分式方程的解是正整数,则所有满足条件的整数a的值之和是( )
    A. 5 B. 8 C. 12 D. 15
    【答案】B
    【解析】
    【分析】先计算不等式组的解集,根据“同大取大”原则,得到解得,再解分式方程得到,根据分式方程的解是正整数,得到,且是2的倍数,据此解得所有符合条件的整数a的值,最后求和.
    【详解】解:
    解不等式①得,,
    解不等式②得,
    不等式组的解集为:


    解分式方程得


    整理得,


    分式方程的解是正整数,

    ,且是2的倍数,
    ,且是2的倍数,
    整数a的值为-1, 1, 3, 5,

    故选:.
    2. (2021•重庆市B)关于x的分式方程+1=的解为正数,且使关于y的一元一次不等式组有解,则所有满足条件的整数a的值之和是(  )
    A.﹣5 B.﹣4 C.﹣3 D.﹣2
    【分析】由关于y的一元一次不等式组有解得到a的取值范围,再由关于x的分式方程+1=的解为正数得到a的取值范围,将所得的两个不等式组成不等式组,确定a的整数解,结论可求.
    【解答】解:关于x的分式方程+1=的解为x=.
    ∵关于x的分式方程+1=的解为正数,
    ∴a+4>0.
    ∴a>﹣4.
    ∵关于x的分式方程+1=有可能产生增根2,
    ∴.
    ∴a≠﹣1.
    解关于y的一元一次不等式组得:

    ∵关于y的一元一次不等式组有解,
    ∴a﹣2<0.
    ∴a<2.
    综上,﹣4<a<2且a≠﹣1.
    ∵a为整数,
    ∴a=﹣3或﹣2或0或1.
    ∴满足条件的整数a的值之和是:﹣3﹣2+0+1=﹣5.
    故选:A.

    3. (2021•山东省聊城市)若﹣3<a≤3,则关于x的方程x+a=2解的取值范围为( )
    A. ﹣1≤x<5 B. ﹣1<x≤1 C. ﹣1≤x<1 D. ﹣1<x≤5
    【答案】A
    【解析】
    【分析】先求出方程的解,再根据﹣3<a≤3的范围,即可求解.
    【详解】解:由x+a=2,得:x=2-a,
    ∵﹣3<a≤3,
    ∴﹣1≤2-a<5,即:﹣1≤x<5,
    故选A.

    二.填空题
    1. (2021•江苏省苏州市)若2x+y=1,且0<y<1,则x的取值范围为  0<x< .
    【分析】由2x+y=1得y=﹣2x+1,根据k=﹣2<0可得,当y=0时,x取得最大值,当y=1时,x取得最小值,将y=0和y=1代入解析式,可得答案.
    【解答】解:由2x+y=1得y=﹣4x+1,
    根据0<y<3可知,
    当y=0时,x取得最大值,
    当y=1时,x取得最小值,
    所以0<x<.
    故答案为:0<x<.

    2. (2021•遂宁市) 已知关于x,y的二元一次方程组满足,则a的取值范围是____.
    【答案】.
    【解析】
    【分析】根据题目中方程组的的特点,将两个方程作差,即可用含a的代数式表示出,再根据,即可求得的取值范围,本题得以解决.
    【详解】解:
    ①-②,得

    ∴,
    解得,
    故答案为:.
    3. (2021•重庆市A)某销售商五月份销售A、B、C三种饮料的数量之比为3:2:4,A、B、C三种饮料的单价之比为1:2:1.六月份该销售商加大了宣传力度,并根据季节对三种饮料的价格作了适当的调整,预计六月份三种饮料的销售总额将比五月份有所增加,A饮料增加的销售占六月份销售总额的,B、C饮料增加的销售额之比为2:1.六月份A饮料单价上调20%且A饮料的销售额与B饮料的销售额之比为2:3,则A饮料五月份的销售数量与六月份预计的销售数量之比为_____________.
    【答案】
    【解析】
    【分析】设销售A饮料的数量为3x,销售B种饮料的数量2x, 销售C种饮料的数量4x,A种饮料的单价y. B、C两种饮料的单价分别为2y、y.六月份A饮料单价上调20%,总销售额为m,可求A饮料销售额为3xy+,B饮料的销售额为,C饮料销售额:,可求,六月份A种预计的销售额,六月份预计的销售数量,A饮料五月份的销售数量与六月份预计的销售数量之比计算即可
    【详解】解:某销售商五月份销售A、B、C三种饮料的数量之比为3:2:4,
    设销售A饮料的数量为3x,销售B种饮料的数量2x, 销售C种饮料的数量4x,
    A、B、C三种饮料的单价之比为1:2:1.,
    设A种饮料的单价y. B、C两种饮料的单价分别为2y、y.
    六月份A饮料单价上调20%后单价为(1+20%)y,总销售额为m,
    A饮料增加的销售占六月份销售总额的
    A饮料销售额为3xy+,
    A饮料的销售额与B饮料的销售额之比为2:3,
    B饮料的销售额为
    B饮料的销售额增加部分为
    ∴C饮料增加的销售额为
    ∴C饮料销售额:


    六月份A种预计的销售额,
    六月份预计的销售数量
    ∴A饮料五月份的销售数量与六月份预计的销售数量之比
    故答案为
    4. (2021•重庆市B)盲盒为消费市场注入了活力,既能够营造消费者购物过程中的趣味体验,也为商家实现销售额提升拓展了途径.某商家将蓝牙耳机、多接口优盘、迷你音箱共22个,搭配为A,B,C三种盲盒各一个,其中A盒中有2个蓝牙耳机,3个多接口优盘,1个迷你音箱;B盒中蓝牙耳机与迷你音箱的数量之和等于多接口优盘的数量,蓝牙耳机与迷你音箱的数量之比为3:2;C盒中有1个蓝牙耳机,3个多接口优盘,2个迷你音箱.经核算,A盒的成本为145元,B盒的成本为245元(每种盲盒的成本为该盒中蓝牙耳机、多接口优盘、迷你音箱的成本之和),则C盒的成本为 155 元.
    【分析】根据题意确定B盲盒各种物品的数量,设出三种物品的价格列出代数式,解代数式即可.
    【解答】解:∵蓝牙耳机、多接口优盘、迷你音箱共22个,A盒中有2个蓝牙耳机,3个多接口优盘,1个迷你音箱;C盒中有1个蓝牙耳机,3个多接口优盘,2个迷你音箱;
    ∴B盒中蓝牙耳机、多接口优盘、迷你音箱共22﹣2﹣3﹣1﹣1﹣3﹣2=10(个),
    ∵B盒中蓝牙耳机与迷你音箱的数量之和等于多接口优盘的数量,蓝牙耳机与迷你音箱的数量之比为3:2,
    ∴B盒中有多接口优盘10×=5(个),蓝牙耳机有5×=3(个),迷你音响有10﹣5﹣3=2(个),
    设蓝牙耳机、多接口优盘、迷你音箱的成本价分别为a元,b元,c元,
    由题知:,
    ∵①×2﹣②得:a+b=45,
    ②×2﹣①×3得:b+c=55,
    ∴C盒的成本为:a+3b+2c=(a+b)+(2b+2c)=45+55×2=155(元),
    故答案为:155.

    5. (2021•北京市)某企业有A,B两条加工相同原材料的生产线.在一天内,A生产线共加工a吨原材料,加工时间为(4a+1)小时;在一天内,B生产线共加工b吨原材料,加工时间为(2b+3)小时.第一天,该企业将5吨原材料分配到A,B两条生产线,两条生产线都在一天内完成了加工,且加工时间相同,则分配到A生产线的吨数与分配到B生产线的吨数的比为    .第二天开工前,该企业按第一天的分配结果分配了5吨原材料后,又给A生产线分配了m吨原材料,给B生产线分配了n吨原材料.若两条生产线都能在一天内加工完各自分配到的所有原材料,且加工时间相同,则的值为    .
    【答案】 ①. 2∶3 ②.
    【解析】
    【分析】设分配到生产线的吨数为x吨,则分配到B生产线的吨数为(5-x)吨,依题意可得,然后求解即可,由题意可得第二天开工时,由上一问可得方程为,进而求解即可得出答案.
    【详解】解:设分配到生产线的吨数为x吨,则分配到B生产线的吨数为(5-x)吨,依题意可得:
    ,解得:,
    ∴分配到B生产线的吨数为5-2=3(吨),
    ∴分配到生产线的吨数与分配到生产线的吨数的比为2∶3;
    ∴第二天开工时,给生产线分配了吨原材料,给生产线分配了吨原材料,
    ∵加工时间相同,
    ∴,
    解得:,
    ∴;
    故答案为,.
    三、解答题
    1.(2021•湖北省荆州市)已知:a是不等式5(a﹣2)+8<6(a﹣1)+7的最小整数解,请用配方法解关于x的方程x2+2ax+a+1=0.
    【分析】解不等式5(a﹣2)+8<6(a﹣1)+7,得a>﹣3,所以最小整数解为﹣2,于是将a=﹣2代入方程x2﹣4x﹣1=0.利用配方法解方程即可.
    【解答】解:解不等式5(a﹣2)+8<6(a﹣1)+7,得a>﹣3,
    ∴最小整数解为﹣2,
    将a=﹣2代入方程x2+2ax+a+1=0,得x2﹣4x﹣1=0,
    配方,得(x﹣2)2=5.
    直接开平方,得x﹣2=±.
    解得x1=2+,x2=2﹣.
    2. (2021•长沙市) 为庆祝伟大的中国共产党成立100周年,发扬红色传统,传承红色精神,某学校举行了主题为“学史明理,学史增信,学史崇德,学史力行”的党史知识竞赛,一共有25道题,满分100分,每一题答对得4分,答错扣1分,不答得0分.
    (1)若某参赛同学只有一道题没有作答,最后他的总得分为86分,则该参赛同学一共答对了多少道题?
    (2)若规定参赛者每道题都必须作答且总得分大于或等于90分才可以被评为“学党史小达人”,则参赛者至少需答对多少道题才能被评为“学党史小达人”?
    【答案】(1)一共答对了22道题;(2)至少需答对23道题.

    2. (2021•河北省)已知训练场球筐中有A、B两种品牌的乒乓球共101个,设A品牌乒乓球有x个.
    (1)淇淇说:“筐里B品牌球是A品牌球的两倍.”嘉嘉根据她的说法列出了方程:101﹣x=2x.请用嘉嘉所列方程分析淇淇的说法是否正确;
    (2)据工作人员透露:B品牌球比A品牌球至少多28个,试通过列不等式的方法说明A品牌球最多有几个.
    【分析】(1)解嘉嘉所列的方程可得出x的值,由x的值不为整数,即可得出淇淇的说法不正确;
    (2)设A品牌乒乓球有x个,则B品牌乒乓球有(101﹣x)个,根据B品牌球比A品牌球至少多28个,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,再取其中的最大整数值即可得出结论.
    【解答】解:(1)嘉嘉所列方程为101﹣x=2x,
    解得:x=33,
    又∵x为整数,
    ∴x=33不合题意,
    ∴淇淇的说法不正确.
    (2)设A品牌乒乓球有x个,则B品牌乒乓球有(101﹣x)个,
    依题意得:101﹣x﹣x≥28,
    解得:x≤36,
    又∵x为整数,
    ∴x可取的最大值为36.
    答:A品牌球最多有36个.

    3. (2021•四川省成都市)为改善城市人居环境,《成都市生活垃圾管理条例》(以下简称《条例》)于2021年3月1日起正式施行.某区域原来每天需要处理生活垃圾920吨,刚好被12个A型和10个B型预处置点位进行初筛、压缩等处理.已知一个A型点位比一个B型点位每天多处理7吨生活垃圾.
    (1)求每个B型点位每天处理生活垃圾的吨数;
    (2)由于《条例》的施行,垃圾分类要求提高,在每个点位每天将少处理8吨生活垃圾,同时由于市民环保意识增强,该区域每天需要处理的生活垃圾比原来少10吨.若该区域计划增设A型、B型点位共5个,试问至少需要增设几个A型点位才能当日处理完所有生活垃圾?
    【分析】(1)每个B型点位每天处理生活垃圾x吨,根据“每天需要处理生活垃圾920吨,刚好被12个A型和10个B型预处置点位进行初筛、压缩等处理”,可列方程,即可解得答案;
    (2)设需要增设y个A型点位才能当日处理完所有生活垃圾,《条例》施行后,每个A型点位每天处理生活垃圾37吨,每个B型点位每天处理生活垃圾30吨,根据题意列出不等式:37(12+y)+30(10+5﹣y)≥920﹣10,可解得y的范围,在求得的范围内取最小正整数值即得到答案.
    【解答】解:(1)设每个B型点位每天处理生活垃圾x吨,则每个A型点位每天处理生活垃圾(x+7)吨,根据题意可得:
    12(x+7)+10x=920,
    解得:x=38,
    答:每个B型点位每天处理生活垃圾38吨;
    (2)设需要增设y个A型点位才能当日处理完所有生活垃圾,
    由(1)可知:《条例》施行前,每个A型点位每天处理生活垃圾45吨,则《条例》施行后,每个A型点位每天处理生活垃圾45﹣8=37(吨),
    《条例》施行前,每个B型点位每天处理生活垃圾38吨,则《条例》施行后,每个B型点位每天处理生活垃圾38﹣8=30(吨),
    根据题意可得:37(12+y)+30(10+5﹣y)≥920﹣10,
    解得y≥,
    ∵y是正整数,
    ∴符合条件的y的最小值为3,
    答:至少需要增设3个A型点位才能当日处理完所有生活垃圾.

    4. (2021•四川省广元市) 为增强学生体质,丰富学生课余活动,学校决定添置一批篮球和足球.甲、乙两家商场以相同的价格出售同种品牌的篮球和足球,已知篮球价格为200元/个,足球价格为150元/个.
    (1)若学校计划用不超过3550元的总费用购买这款篮球和足球共20个,且购买篮球的数量多于购买足球数量的.学校有哪几种购买方案?
    (2)若甲、乙两商场各自推出不同的优惠方案:甲商场累计购物超过500元后,超出500元的部分按90%收费;乙商场累计购物超过2000元后,超出2000元的部分按80%收费.若学校按(1)中的方案购买,学校到哪家商场购买花费少?
    【答案】(1)有三种方案,为:①购买9个篮球,11个足球;②10个篮球,10个足球;③11个篮球,9个足球;(2)学校购买9个篮球,11个足球到甲商场购买花费少;购买10个篮球,10个足球和11个篮球,9个足球到乙商场购买花费少.
    【解析】
    【分析】(1)设学校购买篮球x个,购买足球(20-x)个,根据“学校计划用不超过3550元的总费用购买”和“购买篮球的数量多于购买足球数量的”列出不等式组,求解即可;
    (2)设学校购买篮球x个,购买足球(20-x)个,分别计算出在甲,乙两商场的费用列出不等式求解即可.
    【详解】解:(1)设学校购买篮球x个,购买足球(20-x)个,根据题意得,

    解得,
    ∵x是整数,
    ∴x=9,10或11
    ∴20-x=12,10或9
    故有三种方案,为:①购买9个篮球,11个足球;②10个篮球,10个足球;③11个篮球,9个足球;
    (2)设学校购买篮球x个,购买足球(20-x)个,
    在甲商场花费:元;
    在乙商场花费:元;
    ∴要使学校到甲商场花费最少,则有:

    解得,
    ∵,且x是整数,
    ∴x=9,
    即:学校购买9个篮球,11个足球到甲商场购买花费少;购买10个篮球,10个足球和11个篮球,9个足球到乙商场购买花费少.
    5. (2021•泸州市)某运输公司有A、B两种货车,3辆A货车与2辆B货车一次可以运货90吨,5辆A货车与4辆B货车一次可以运货160吨.
    (1)请问1辆A货车和1辆B货车一次可以分别运货多少吨?
    (2)目前有190吨货物需要运输,该运输公司计划安排A、B两种货车将全部货物一次运完(A、B两种货车均满载),其中每辆A货车一次运货花费500元,每辆B货车一次运货花费400元.请你列出所有的运输方案,并指出哪种运输方案费用最少.
    【答案】(1)1辆A货车和1辆B货车一次可以分别运货20吨和15吨;(2)共有3种租车方案,方案1:租用A型车8辆,B型车2辆;方案2:租用A型车5辆,B型车6辆;方案3:租用A型车2辆,B型车10辆;租用A型车8辆,B型车2辆最少.
    【解析】
    【分析】(1)设1辆A货车和1辆B货车一次可以分别运货x吨和y吨,根据“3辆A货车与2辆B货车一次可以运货90吨,5辆A货车与4辆B货车一次可以运货160吨”列方程组求解可得;
    (2)设货运公司安排A货车m辆,则安排B货车n辆.根据“共有190吨货物”列出二元一次方程组,结合m,n均为正整数,即可得出各运输方案.再根据方案计算比较得出费用最小的数据.
    【详解】解:(1)1辆A货车和1辆B货车一次可以分别运货x吨和y吨,
    根据题意可得:,
    解得:,
    答:1辆A货车和1辆B货车一次可以分别运货20吨和15吨;
    (2)设安排A型车m辆,B型车n辆,
    依题意得:20m+15n=190,即,
    又∵m,n均为正整数,
    ∴或或,
    ∴共有3种运输方案,
    方案1:安排A型车8辆,B型车2辆;
    方案2:安排A型车5辆,B型车6辆;
    方案3:安排A型车2辆,B型车10辆.
    方案1所需费用:5008+4002=4800(元);
    方案2所需费用:5005+4006=4900(元);
    方案3所需费用:5002+40010=5000(元);
    ∵4800<4900<5000,
    ∴安排A型车8辆,B型车2辆最省钱,最省钱的运输费用为4800元.
    6.(2021•四川省眉山市)为进一步落实“德、智、体、美、劳”五育并举工作,某中学以体育为突破口,准备从体育用品商场一次性购买若干个足球和篮球,用于学校球类比赛活动.每个足球的价格都相同,每个篮球的价格也相同.已知篮球的单价比足球单价的2倍少30元,用1200元购买足球的数量是用900元购买篮球数量的2倍.
    (1)足球和篮球的单价各是多少元?
    (2)根据学校实际情况,需一次性购买足球和篮球共200个,但要求足球和篮球的总费用不超过15500元,学校最多可以购买多少个篮球?
    【分析】(1)设足球的单价是x元,则篮球的单价是(2x﹣30)元,根据数量=总价÷单价,结合用1200元购买足球的数量是用900元购买篮球数量的2倍,即可得出关于x的分式方程,解之经检验后即可得出结论;
    (2)设学校可以购买m个篮球,则可以购买(200﹣m)个足球,利用总价=单价×数量,结合购买足球和篮球的总费用不超过15500元,即可得出关于m的一元一次不等式,解之取其中的最大整数值即可得出结论.
    【解答】解:(1)设足球的单价是x元,则篮球的单价是(2x﹣30)元,
    依题意得:=2×,
    解得:x=60,
    经检验,x=60是原方程的解,且符合题意,
    ∴2x﹣30=90.
    答:足球的单价是60元,篮球的单价是90元.
    (2)设学校可以购买m个篮球,则可以购买(200﹣m)个足球,
    依题意得:90m+60(200﹣m)≤15500,
    解得:m≤.
    又∵m为正整数,
    ∴m可以取的最大值为116.
    答:学校最多可以购买116个篮球.
    .
    7. (2021•江苏省无锡市)为了提高广大职工对消防知识的学习热情,增强职工的消防意识,某单位工会决定组织消防知识竞赛活动,本次活动拟设一、二等奖若干名,并购买相应奖品.现有经费1275元用于购买奖品,且经费全部用完,已知一等奖奖品单价与二等奖奖品单价之比为4:3.当用600元购买一等奖奖品时,共可购买一、二等奖奖品25件.
    (1)求一、二等奖奖品的单价;
    (2)若购买一等奖奖品的数量不少于4件且不超过10件,则共有哪几种购买方式?
    【分析】(1)设一等奖奖品单价为4x元,则二等奖奖品单价为3x元,根据数量=总价÷单价,即可得出关于x的分式方程,解之经检验后即可得出x的值,再将其代入4x,3x中即可求出结论;
    (2)设购买一等奖奖品m件,二等奖奖品n件,利用总价=单价×数量,即可得出关于m,n的二元一次方程,结合m,n均为正整数且4≤m≤10,即可得出各购买方案.
    【解答】解:(1)设一等奖奖品单价为4x元,则二等奖奖品单价为3x元,
    依题意得:+=25,
    解得:x=15,
    经检验,x=15是原方程的解,且符合题意,
    ∴4x=60,3x=45.
    答:一等奖奖品单价为60元,二等奖奖品单价为45元.
    (2)设购买一等奖奖品m件,二等奖奖品n件,
    依题意得:60m+45n=1275,
    ∴n=.
    ∵m,n均为正整数,且4≤m≤10,
    ∴或或,
    ∴共有3种购买方案,
    方案1:购买4件一等奖奖品,23件二等奖奖品;
    方案2:购买7件一等奖奖品,19件二等奖奖品;
    方案3:购买10件一等奖奖品,15件二等奖奖品.

    8. (2021•呼和浩特市)为了促进学生加强体育锻炼,某中学从去年开始,每周除体育课外,又开展了“足球俱乐部1小时”活动,去年学校通过采购平台在某体育用品店购买A品牌足球共花费2880元,B品牌足球共花费2400元,且购买A品牌足球数量是B品牌数量的1.5倍,每个足球的售价,A品牌比B品牌便宜12元.今年由于参加俱乐部人数增加,需要从该店再购买A、B两种足球共50个,已知该店对每个足球的售价,今年进行了调整,A品牌比去年提高了5%,B品牌比去年降低了10%,如果今年购买A、B两种足球的总费用不超过去年总费用的一半,那么学校最多可购买多少个B品牌足球?

    解:设去年A足球售价为x元/个,则B足球售价为元/个
    由题意得:


    经检验,是原分式方程的解且符合题意
    ∴A足球售价为48元/个,B足球售价为60元/个
    设今年购进B足球的个数为a个,则有




    ∴最多可购进33个B足球

    9. (2021•内蒙古通辽市)为做好新冠疫情的防控工作,某单位需购买甲、乙两种消毒液,经了解每桶甲种消毒液的零售价比乙种消毒液的零售价多6元,该单位以零售价分别用900元和720元采购了相同桶数的甲、乙两种消毒液.
    (1)求甲、乙两种消毒液的零售价分别是每桶多少元?
    (2)由于疫情防控进入常态化,该单位需再次购买两种消毒液共300桶,且甲种消毒液的桶数不少于乙种消毒液桶数的.由于购买量大,甲、乙两种消毒液分别获得了20元/桶、15元/桶的批发价.求甲种消毒液购买多少桶时,所需资金总额最少?最少总金额是多少元?
    【分析】(1)设乙种消毒液的零售价为x元/桶,则甲种消毒液的零售价为(x+6)元/桶,根据数量=总价÷单价,结合该单位以零售价分别用900元和720元采购了相同桶数的甲、乙两种消毒液,即可得出关于x的分式方程,解之经检验后即可得出结论;
    (2)设购买甲种消毒液m桶,则购买乙种消毒液(300﹣m)桶,根据购进甲种消毒液的桶数不少于乙种消毒液桶数的,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,设所需资金总额为w元,根据所需资金总额=甲种消毒液的批发价×购进数量+乙种消毒液的批发价×购进数量,即可得出w关于m的函数关系式,再利用一次函数的性质即可解决最值问题.
    【解答】解:(1)设乙种消毒液的零售价为x元/桶,则甲种消毒液的零售价为(x+6)元/桶,
    依题意得:=,
    解得:x=24,
    经检验,x=24是原方程的解,且符合题意,
    ∴x+6=30.
    答:甲种消毒液的零售价为30元/桶,乙种消毒液的零售价为24元/桶.
    (2)设购买甲种消毒液m桶,则购买乙种消毒液(300﹣m)桶,
    依题意得:m≥(300﹣m),
    解得:m≥75.
    设所需资金总额为w元,则w=20m+15(300﹣m)=5m+4500,
    ∵5>0,
    ∴w随m的增大而增大,
    ∴当m=75时,w取得最小值,最小值=5×75+4500=4875.
    答:当甲种消毒液购买75桶时,所需资金总额最少,最少总金额是4875元.

    10. (2021•辽宁省本溪市)某班计划购买两种毕业纪念册,已知购买1本手绘纪念册和4本图片纪念册共需135元,购买5本手绘纪念册和2本图片纪念册共需225元.
    (1)求每本手绘纪念册和每本图片纪念册的价格分别为多少元?
    (2)该班计划购买手绘纪念册和图片纪念册共40本,总费用不超过1100元,那么最多能购买手绘纪念册多少本?
    【答案】(1)每本手绘纪念册35元,每本图片纪念册25元;(2)最多能购买手绘纪念册10本.
    【解析】
    【分析】(1)设每本手绘纪念册x元,每本图片纪念册y元,根据题意列出二元一次方程组,求解即可;
    (2)设购买手绘纪念册a本,则购买图片纪念册本,根据题意列出不等式,求解不等式即可.
    【详解】解:(1)设每本手绘纪念册x元,每本图片纪念册y元,
    根据题意可得:,
    解得,
    答:每本手绘纪念册35元,每本图片纪念册25元;
    (2)设购买手绘纪念册a本,则购买图片纪念册本,根据题意可得:

    解得,
    ∴最多能购买手绘纪念册10本.
    11. (2021•湖南省常德市)某汽车贸易公司销售A、B两种型号的新能源汽车,A型车进货价格为每台12万元,B型车进货价格为每台15万元,该公司销售2台A型车和5台B型车,可获利3.1万元,销售1台A型车和2台B型车,可获利1.3万元.
    (1)求销售一台A型、一台B型新能源汽车的利润各是多少万元?
    (2)该公司准备用不超过300万元资金,采购A、B两种新能源汽车共22台,问最少需要采购A型新能源汽车多少台?
    【答案】(1)销售每台A型车的利润为0.3万元,每台B型车的利润为0.5万元;(2)最少需要采购A型新能源汽车台.
    【解析】
    【分析】(1)设每台A型车的利润为x万元,每台B型车的利润为y万元,根据题意中的数量关系列出二元一次方程组,解方程组即可;
    (2)先求出每台A型车和每台B型车的采购价,根据“用不超过300万元资金,采购A、B两种新能源汽车共22台”列出不等式求解即可.
    【详解】解:(1)设每台A型车的利润为x万元,每台B型车的利润为y万元,根据题意得,

    解得,
    答:销售每台A型车的利润为0.3万元,每台B型车的利润为0.5万元;
    (2)因为每台A型车的采购价为:12万元,每台B型车的采购价为:15万元,
    设最少需要采购A型新能源汽车m台,则需要采购B型新能源汽车(22-m)台,根据题意得,


    解得,
    ∵m是整数,
    ∴m的最小整数值为,
    即,最少需要采购A型新能源汽车台.


    相关试卷

    2021年全国中考数学真题分类汇编--方程与不等式:方程与不等式(组)的综合应用(含不定方程)( 答案版):

    这是一份2021年全国中考数学真题分类汇编--方程与不等式:方程与不等式(组)的综合应用(含不定方程)( 答案版),共19页。

    2021全国中考数学真题分类汇编--方程与不等式——二元一次方程(组)(无答案):

    这是一份2021全国中考数学真题分类汇编--方程与不等式——二元一次方程(组)(无答案),共7页。

    2021全国中考数学真题分类汇编--方程与不等式(组)的综合应用(含不定方程)(无答案):

    这是一份2021全国中考数学真题分类汇编--方程与不等式(组)的综合应用(含不定方程)(无答案),共7页。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map