搜索
    上传资料 赚现金
    英语朗读宝

    2020-2021年桂林市高二(上)1月月考数学试卷人教A版

    2020-2021年桂林市高二(上)1月月考数学试卷人教A版第1页
    2020-2021年桂林市高二(上)1月月考数学试卷人教A版第2页
    2020-2021年桂林市高二(上)1月月考数学试卷人教A版第3页
    还剩8页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2020-2021年桂林市高二(上)1月月考数学试卷人教A版

    展开

    这是一份2020-2021年桂林市高二(上)1月月考数学试卷人教A版,共11页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    1. 若a>b且c∈R,则下列不等式中一定成立的是( )
    A.a2>b2B.1abc2D.2a>2b

    2. 等差数列{an}的前n项和为Sn,若a1=2,S3=15,则a8=( )
    A.11B.12C.23D.24

    3. 抛物线y=2x2的焦点坐标为( )
    A.0,18B.0,12C.18,0D.12,0

    4. 若△ABC的内角A,B,C所对的边a,b,c满足a+b2−c2=3,且C=120∘,则ab的值为( )
    A.1B.2C.3D.4

    5. 设命题 p:∃x0∈(0,+∞),lnx0=−1, 命题q:若 m>1,则方程 x2+my2=1表示焦点在x轴上的椭圆,那么下列命题属于真命题的是( )
    A.¬pB.¬p∨¬qC.p∧qD.p∧(¬q)

    6. 设x,y满足约束条件x−y≥0,x−2y≤0,y−1≤0,则z=2x+y的最大值是( )
    A.0B.3C.4D.5

    7. 已知函数fx的导函数为f′x,且满足fx=2xf′1+lnx,则f′2=( )
    A.32B.1C.−1D.−32

    8. 在△ABC中,角A,B,C的对边分别为a,b,c,且1−csA=c−bc,则△ABC的形状为( )
    A.正三角形B.直角三角形
    C.等腰直角三角形D.等腰三角形

    9. “x≥1”是“1x≤1”的( )
    A.充分不必要条件B.必要不充分条件
    C.充要条件D.既不充分也不必要条件

    10. 已知双曲线C:x2a2−y2b2=1(a>0,b>0)左、右焦点分别为F1,F2,过F1的直线l交双曲线C的左支于A,B两点,且|AB|=6.若△ABF2的周长为24,则双曲线C的实轴长是( )
    A.3B.6C.9D.12

    11. fx是定义在R上的奇函数,当xb,二次三项式ax2+2x+b≥0对于一切实数x恒成立,又∃x0∈R,使ax02+2x0+b=0成立,则a2+b2a−b的最小值为________.
    三、解答题

    已知命题p:∀x∈[1, 2],x2−a≥0,命题q:∃x∈R,使得x2+(a−1)x+1m>0)有且只有一个公共点P(2, 1).

    (1)求椭圆C的标准方程;

    (2)若直线l′:y=−x+b交C于A,B两点,是否存在以AB为直径的圆经过点P,若存在,求出b的值;若不存在,说明理由.
    参考答案与试题解析
    2020-2021年桂林市高二(上)1月月考数学试卷
    一、选择题
    1.
    【答案】
    D
    【考点】
    不等式的基本性质
    【解析】
    利用不等式的基本性质即可得出.
    【解答】
    解:A,取a=0,b=−1,a20,b1b,故B选项错误;
    C,c=0时,ac2=bc2,故C选项错误;
    D,由指数函数的单调性可知,2a>2b,故D选项正确.
    故选D.
    2.
    【答案】
    C
    【考点】
    等差数列的前n项和
    等差数列的通项公式
    【解析】
    由等差数列的性质和已知可得a2,进而可得公差,可得a6
    【解答】
    解:由题意,设等差数列{an}的公差为d,
    ∵ S3=15,
    ∴ a1+a2+a3=3a2=15,
    解得a2=5,
    又a1=2,
    ∴ d=a2−a1=5−2=3,
    ∴ a8=a1+7d=2+7×3=23.
    故选C.
    3.
    【答案】
    A
    【考点】
    抛物线的标准方程
    【解析】
    将抛物线的方程化为普通方程,再求焦点坐标即可.
    【解答】
    解:由题意,抛物线y=2x2化为标准方程为x2=12y,
    则抛物线的焦点在y轴上,且p=14,
    故抛物线的焦点坐标为(0,18).
    故选A.
    4.
    【答案】
    C
    【考点】
    余弦定理
    【解析】
    此题暂无解析
    【解答】
    解:∵ C=120∘,
    由余弦定理,得csC=a2+b2−c22ab=−12,
    即a2+b2−c2=−ab,
    ∴ a+b2−c2=ab,
    又a+b2−c2=3,
    ∴ ab=3.
    故选C.
    5.
    【答案】
    C
    【考点】
    椭圆的标准方程
    四种命题的真假关系
    逻辑联结词“或”“且”“非”
    【解析】
    本题主要考查复合命题真假判断,根据条件判断p,q的真假是解决本题的关键.
    分别判断命题p,q的真假,结合复合命题真假的关系进行判断即可.
    【解答】
    解:当x0=1e时,lnx0=−1,
    即∃x0∈0,+∞,lnx0=−1,故命题p是真命题;
    方程x2+my2=1的标准方程为x2+y21m=1,
    当m>1,即01.
    又∃x∈R,使得x2+a−1x+10,
    解得a>3或a3或a1}∩{a|a3}=a|a>3.
    综上所述,实数a的取值范围为{a|−1≤a≤1或a>3}.
    【答案】
    解:(1)∵ csA=14,
    ∴ sinA=154.
    由正弦定理,得asinA=bsinB,且a=2b,
    ∴ sinB=bsinAa=158.
    (2)由余弦定理,得csA=b2+c2−a22bc=14,且a=2b,
    ∴ b2+c2−4b22bc=14,
    整理得2c2−bc−6b2=0,
    即2c+3bc−2b=0,
    解得c=2b或c=−32b(负值,舍去),
    ∴ a=c,
    ∴ S△ABC =12acsinB=12c2×158=15,
    解得c=4.
    【考点】
    正弦定理
    同角三角函数间的基本关系
    余弦定理
    【解析】
    此题暂无解析
    【解答】
    解:(1)∵ csA=14,
    ∴ sinA=154.
    由正弦定理,得asinA=bsinB,且a=2b,
    ∴ sinB=bsinAa=158.
    (2)由余弦定理,得csA=b2+c2−a22bc=14,且a=2b,
    ∴ b2+c2−4b22bc=14,
    整理得2c2−bc−6b2=0,
    即2c+3bc−2b=0,
    解得c=2b或c=−32b(负值,舍去),
    ∴ a=c,
    ∴ S△ABC =12acsinB=12c2×158=15,
    解得c=4.
    【答案】
    解:(1)当n=1时, a1=S1=2+m;
    当n≥2时, an=Sn−Sn−1
    =n2+n+m−(n−1)2−(n−1)−m=2n,
    ∵ 数列an是等差数列,
    ∴ a1满足an=2n,
    则2+m=2,
    解得m=0.
    (2)由(1)可知,an=2n,
    ∴ 2an=22n=4n,
    ∴ 数列2an的前n项和为41−4n1−4=4n+1−43,
    ∵ Sn=n2+n,
    ∴ 1Sn=1n2+n=1nn+1=1n−1n+1,
    ∴ 数列1Sn的前n项和为1−12+12−13+⋯
    +1n−1n+1=1−1n+1,
    又bn=1Sn+2an,
    ∴ Tn=1−1n+1+4n+1−43
    =4n+1−13−1n+1.
    【考点】
    等差数列的通项公式
    数列的求和
    等比数列的前n项和
    等差数列的前n项和
    【解析】
    此题暂无解析
    【解答】
    解:(1)当n=1时, a1=S1=2+m;
    当n≥2时, an=Sn−Sn−1
    =n2+n+m−(n−1)2−(n−1)−m=2n,
    ∵ 数列an是等差数列,
    ∴ a1满足an=2n,
    则2+m=2,
    解得m=0.
    (2)由(1)可知,an=2n,
    ∴ 2an=22n=4n,
    ∴ 数列2an的前n项和为41−4n1−4=4n+1−43,
    ∵ Sn=n2+n,
    ∴ 1Sn=1n2+n=1nn+1=1n−1n+1,
    ∴ 数列1Sn的前n项和为1−12+12−13+⋯
    +1n−1n+1=1−1n+1,
    又bn=1Sn+2an,
    ∴ Tn=1−1n+1+4n+1−43
    =4n+1−13−1n+1.
    【答案】
    解:(1)设f(n)为前n年的总盈利额.
    由题意,得f(n)=95n−(10n2−5n)−90
    =−10n2+100n−90=−10(n−1)(n−9),
    令f(n)>0,即−10(n−1)(n−9)>0,
    解得10,
    解得10,
    解得x>1;
    令f′x0,即 (2x−a)(x−1)x>0,
    解得0

    相关试卷

    2020-2021年广西省桂林市桂林市高三(下)2月月考数学试卷人教A版:

    这是一份2020-2021年广西省桂林市桂林市高三(下)2月月考数学试卷人教A版,共12页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2020-2021年广西省桂林市高一(下)2月月考数学试卷人教A版:

    这是一份2020-2021年广西省桂林市高一(下)2月月考数学试卷人教A版,共9页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2020-2021学年广西高二(上)月考数学试卷(文科)(三)(12月份)人教A版:

    这是一份2020-2021学年广西高二(上)月考数学试卷(文科)(三)(12月份)人教A版,共9页。试卷主要包含了解答题,共6题,共70分等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map