年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022年中考数学专题复习类型八 其他探究题(解析版)

    2022年中考数学专题复习类型八 其他探究题(解析版)第1页
    2022年中考数学专题复习类型八 其他探究题(解析版)第2页
    2022年中考数学专题复习类型八 其他探究题(解析版)第3页
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年中考数学专题复习类型八 其他探究题(解析版)

    展开

    这是一份2022年中考数学专题复习类型八 其他探究题(解析版),共28页。

    探究发现:
    (1)当点F为线段的中点时,连接(如图(2),小明经过探究,得到结论:.你认为此结论是否成立?_________.(填“是”或“否”)
    拓展延伸:
    (2)将(1)中的条件与结论互换,即:若,则点F为线段的中点.请判断此结论是否成立.若成立,请写出证明过程;若不成立,请说明理由.
    问题解决:
    (3)若,求的长.
    【答案】(1)是;(2)结论成立,理由见解析;(3)
    【解析】
    【分析】
    (1)利用等角的余角相等求出∠A=∠E,再通过AB=BD求出∠A=∠ADB,紧接着根据直角三角形斜边的中线等于斜边的一半求出FD=FE=FC,由此得出∠E=∠FDE,据此进一步得出∠ADB=∠FDE,最终通过证明∠ADB+∠EDC=90°证明结论成立即可;
    (2)根据垂直的性质可以得出90°,90°,从而可得,接着证明出,利用可知,从而推出,最后通过证明得出,据此加以分析即可证明结论;
    (3)如图,设G为的中点,连接GD,由(1)得,故而,在中,利用勾股定理求出,由此得出,紧接着,继续通过勾股定理求出,最后进一步证明,再根据相似三角形性质得出,从而求出,最后进一步分析求解即可.
    【详解】
    (1)∵∠ABC=∠CDE=90°,
    ∴∠A+∠ACB=∠E+∠ECD,
    ∵∠ACB=∠ECD,
    ∴∠A=∠E,
    ∵AB=BD,
    ∴∠A=∠ADB,
    在中,
    ∵F是斜边CE的中点,
    ∴FD=FE=FC,
    ∴∠E=∠FDE,
    ∵∠A=∠E,
    ∴∠ADB=∠FDE,
    ∵∠FDE+∠FDC=90°,
    ∴∠ADB+∠FDC=90°,
    即∠FDB=90°,
    ∴BD⊥DF,结论成立,
    故答案为:是;
    (2)结论成立,理由如下:
    ∵,
    ∴90°,90°,
    ∴,
    ∵,
    ∴.
    ∴.
    又∵,
    ∴.
    ∴.
    又90°,90°,,
    ∴,
    ∴.
    ∴.
    ∴F为的中点;
    (3)如图,设G为的中点,连接GD,由(1)可知,
    ∴,
    又∵,
    在中,,
    ∴,
    在中,,
    在与中,
    ∵∠ABC=∠EDC,∠ACB=∠ECD,
    ∴,
    ∴,
    ∴,
    ∴.
    【点睛】
    本题主要考查了直角三角形的性质和相似三角形的性质及判定的综合运用,熟练掌握相关方法是解题关键.
    【典例2】如图,在菱形ABCD中,AB=AC,点E,F,G分别在边BC,CD上,BE=CG,AF平分∠EAG,点H是线段AF上一动点(与点A不重合).
    (1)求证:△AEH≌△AGH;
    (2)当AB=12,BE=4时.
    ①求△DGH周长的最小值;
    ②若点O是AC的中点,是否存在直线OH将△ACE分成三角形和四边形两部分,其中三角形的面积与四边形的面积比为1:3.若存在,请求出的值;若不存在,请说明理由.
    【分析】(1)先判断出△ABC是等边三角形,进而判断出∠ACD=∠ABC,判断出△ABE≌△ACG,即可得出结论;
    (2)①先判断出EH+DH最小时,△AEH的周长最小,在Rt△DCM中,求出CM=6,DM=6,在Rt△DME中,
    根据勾股定理得,DE=2,即可得出结论;
    ②分两种情况:Ⅰ、当OH与线段AE相交时,判断出点N是AE的中点,即可得出结论;
    Ⅱ、当OH与CE相交时,判断出点Q是CE的中点,再构造直角三角形,即可得出结论.
    【解答】(1)证明:∵四边形ABCD是菱形,
    ∴AB=BC,
    ∵AB=AC,
    ∴AB=BC=AC,
    ∴△ABC是等边三角形,
    ∴∠ABC=60°,
    ∴∠BCD=120°,
    ∵AC是菱形ABCD的对角线,
    ∴∠ACD=∠BCD=60°=∠ABC,
    ∵BE=CG,
    ∴△ABE≌△ACG(SAS),
    ∴AE=AG,
    ∵AF平分∠EAG,
    ∴∠EAF=∠GAF,
    ∵AH=AH,
    ∴△AEH≌△AGH(SAS);
    (2)①如图1,
    过点D作DM⊥BC交BC的延长线于M,连接DE,
    ∵AB=12,BE=4,
    ∴CG=4,
    ∴CE=DG=12﹣4=8,
    由(1)知,△AEH≌△AGH,
    ∴EH=HG,
    ∴l△DGH=DH+GH+DG=DH+HE+8,
    要是△AEH的周长最小,则EH+DH最小,最小为DE,
    在Rt△DCM中,∠DCM=180°﹣120°=60°,CD=AB=12,
    ∴CM=6,
    ∴DM=CM=6,
    在Rt△DME中,EM=CE+CM=14,
    根据勾股定理得,DE===2,
    ∴△DGH周长的最小值为2+8;
    ②Ⅰ、当OH与线段AE相交时,交点记作点N,如图2,连接CN,
    ∴点O是AC的中点,
    ∴S△AON=S△CON=S△ACN,
    ∵三角形的面积与四边形的面积比为1:3,
    ∴=,
    ∴S△CEN=S△ACN,
    ∴AN=EN,
    ∵点O是AC的中点,
    ∴ON∥CE,
    ∴;
    Ⅱ、当OH与线段CE相交时,交点记作Q,如图3,
    连接AQ,FG,∵点O是AC的中点,
    ∴S△AOQ=S△COQ=S△ACQ,
    ∵三角形的面积与四边形的面积比为1:3,
    ∴,
    ∴S△AEQ=S△ACQ,
    ∴CQ=EQ=CE=(12﹣4)=4,
    ∵点O是AC的中点,
    ∴OQ∥AE,设FQ=x,
    ∴EF=EQ+FQ=4+x,CF=CQ﹣FQ=4﹣x,
    由(1)知,AE=AG,
    ∵AF是∠EAG的角平分线,
    ∴∠EAF=∠GAF,
    ∵AF=AF,
    ∴△AEF≌△AGF(SAS),
    ∴FG=EF=4+x,
    过点G作GP⊥BC交BC的延长线于P,
    在Rt△CPG中,∠PCG=60°,CG=4,
    ∴CP=CG=2,PG=CP=2,
    ∴PF=CF+CP=4﹣x+2=6﹣x,
    在Rt△FPG中,根据勾股定理得,PF2+PG2=FG2,
    ∴(6﹣x)2+(2)2=(4+x)2,
    ∴x=,
    ∴FQ=,EF=4+=,
    ∵OQ∥AE,
    ∴==,
    即的值为或.
    【点评】此题是四边形综合题,主要考查了全等三角形的判定和性质,等边三角形的判定,菱形的性质,含30度角的直角三角形的性质,勾股定理,角平分线的定义,判断出点N是AE的中点和点Q是CE的中点是解本题的关键.
    【典例3】综合与探究
    在平面直角坐标系中,抛物线y=x2+bx+c经过点A(﹣4,0),点M为抛物线的顶点,点B在y轴上,且OA=OB,直线AB与抛物线在第一象限交于点C(2,6),如图①.
    (1)求抛物线的解析式;
    (2)直线AB的函数解析式为 ,点M的坐标为 ,cs∠ABO= ;
    连接OC,若过点O的直线交线段AC于点P,将△AOC的面积分成1:2的两部分,则点P的坐标为 ;
    (3)在y轴上找一点Q,使得△AMQ的周长最小.具体作法如图②,作点A关于y轴的对称点A',连接MA'交y轴于点Q,连接AM、AQ,此时△AMQ的周长最小.请求出点Q的坐标;
    (4)在坐标平面内是否存在点N,使以点A、O、C、N为顶点的四边形是平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.
    【分析】(1)将点A、C的坐标代入抛物线表达式即可求解;
    (2)点A(﹣4,0),OB=OA=4,故点B(0,4),即可求出AB的表达式;OP将△AOC的面积分成1:2的两部分,则AP=AC或AC,即可求解;
    (3)△AMQ的周长=AM+AQ+MQ=AM+A′M最小,即可求解;
    (4)分AC是边、AC是对角线两种情况,分别求解即可.
    【解答】解:(1)将点A、C的坐标代入抛物线表达式得:,解得,
    故直线AB的表达式为:y=x2+2x;
    (2)点A(﹣4,0),OB=OA=4,故点B(0,4),
    由点A、B的坐标得,直线AB的表达式为:y=x+4;
    则∠ABO=45°,故cs∠ABO=;
    对于y=x2+2x,函数的对称轴为x=﹣2,故点M(﹣2,﹣2);
    OP将△AOC的面积分成1:2的两部分,则AP=AC或AC,
    则,即,解得:yP=2或4,
    故点P(﹣2,2)或(0,4);
    故答案为:y=x+4;(﹣2,﹣2);;(﹣2,2)或(0,4);
    (3)△AMQ的周长=AM+AQ+MQ=AM+A′M最小,
    点A′(4,0),
    设直线A′M的表达式为:y=kx+b,则,解得,
    故直线A′M的表达式为:y=x﹣,
    令x=0,则y=﹣,故点Q(0,﹣);
    (4)存在,理由:
    设点N(m,n),而点A、C、O的坐标分别为(﹣4,0)、(2,6)、(0,0),
    ①当AC是边时,
    点A向右平移6个单位向上平移6个单位得到点C,同样点O(N)右平移6个单位向上平移6个单位得到点N(O),
    即0±6=m,0±6=n,解得:m=n=±6,
    故点N(6,6)或(﹣6,﹣6);
    ②当AC是对角线时,
    由中点公式得:﹣4+2=m+0,6+0=n+0,
    解得:m=﹣2,n=6,
    故点N(﹣2,6);
    综上,点N的坐标为(6,6)或(﹣6,﹣6)或(﹣2,6).
    【点评】本题考查的是二次函数综合运用,涉及到一次函数的性质、平行四边形的性质、图形的平移、面积的计算等,其中(4),要注意分类求解,避免遗漏.
    【典例4】已知正方形ABCD,点E在直线AD上(不与点A、D重合),连接BE,作EF⊥BE,且EF=BE,过点F作FG⊥BC,交直线BC于点G.
    (1)如图①,当点E在边AD上,点G在边BC的延长线上时,求证:AB+AE=BG;
    (2)如图②,当点E在边DA的延长线上,点G在边BC上时,FG交AD于点H,试猜想AB、AE与BG的关系,并加以证明;
    (3)如图③,当点E在边AD的延长线上,点G在边BC上时,FG交AD于点N,请直接写出线段AB、AE、BG之间的数量关系,不需要证明.

    图① 图② 图③
    第4题图
    【答案】(1)证明:如解图,延长AD交GF的延长线于点M,
    ∵四边形ABCD是正方形,
    第4题解图
    ∴∠A=90°,∠ABC=90°,
    又∵FG⊥BC,
    ∴四边形ABGM是矩形,
    ∴AM=BG,
    ∵∠A=90°,EF⊥BE,∠M=90°,
    ∴∠AEB=∠MFE,
    在△ABE和△MEF中,eq \b\lc\{(\a\vs4\al\c1(∠A=∠M,∠AEB=∠MFE,EB=EF)),
    ∴△ABE≌△MEF(AAS),
    ∴AB=EM,
    ∵AM=AE+EM=AE+AB,
    ∴AB+AE=BG;
    (2)AB-AE=BG;
    证明:∵∠FEH+∠BEA=90°,
    ∠BEA+∠ABE=90°,
    ∴∠FEH=∠ABE,
    在△ABE和△HEF中,eq \b\lc\{(\a\vs4\al\c1(∠BAE=∠EHF,∠ABE=∠HEF,BE=EF)),
    ∴△ABE≌△HEF(AAS),
    ∴EH=AB,EH-AE=AB-AE=AH,
    ∵四边形ABGH是矩形,
    ∴AH=BG,∴AB-AE=BG;
    (3)AE=AB+BG.
    【解法提示】由(2)得△ABE≌△NEF,
    ∴NE=AB,
    ∵AN+NE=AN+AB=AE,BG=AN,
    ∴AE=AB+BG.
    【典例5】如图①,在等腰Rt△ABC和等腰Rt△EDB中,AC=BC,DE=BD,∠ACB=∠EDB=90°,P为AE的中点.
    (1)观察猜想
    连接PC、PD,则线段PC与PD的位置关系是________,数量关系是________;
    (2)探究证明
    如图②,当点E在线段AB上运动时,其他条件不变,作EF⊥BC于F,连接PF,试判断△PCF的形状,并说明理由;
    (3)拓展延伸
    在点E的运动过程中,当△PCF是等边三角形时,直接写出△ACB与△EDB的两直角边之比.
    【答案】解:(1)PC⊥PD,PC=PD;
    【解法提示】如解图①,过点E作EF⊥BC于F,过点P作PH⊥BC于H,连接PF,

    易得四边形EFBD是正方形,
    ∴EF=ED,∠DEB=∠FEB=45°,
    ∴∠PEF=∠PED=135°,
    在△PEF和△PED中,
    eq \b\lc\{(\a\vs4\al\c1(EF=ED,∠PEF=∠PED,PE=PE)),
    ∴△PEF≌△PED(SAS),
    ∴PF=PD,∠EPF=∠EPD,
    ∵AC∥PH∥EF,点P为AE的中点,
    ∴点H是FC的中点,
    ∴CH=HF,
    又PH⊥BC,∴PC=PF,
    故△PCF是等腰三角形,∴∠CPH=∠FPH,
    ∴PC=PD;
    ∵∠HPB=∠HPF+∠EPF=45°,
    ∴∠CPD=∠CPH+∠HPF+∠EPF+∠EPD=2(∠HPF+∠EPF)=90°,
    ∴PC⊥PD.
    (2)△PCF为等腰三角形,
    理由如下:如解图②,过点P作PH⊥BC于点H,

    则AC∥PH∥EF,
    ∵P为AE的中点,
    ∴点H是FC的中点,∴CH=HF,
    又PH⊥BC,
    ∴PC=PF,
    ∴△PCF为等腰三角形;
    (3)eq \r(3)+2.
    【解法提示】如解图③,过点E作EF⊥BC于点F,过点P作PH⊥BC于点H,由(1)知,四边形BDEF为正方形,设EF=BF=BD=x,HF=y,

    ∵△PCF是等边三角形,
    ∴PH=eq \r(3)y,
    ∵PH∥EF,
    ∴△BEF∽△BPH,
    ∴eq \f(EF,PH)=eq \f(BF,BH),即eq \f(x,\r(3)y)=eq \f(x,x+y),
    解得y=eq \f(\r(3)+1,2)x,
    ∴BC=x+2y=(eq \r(3)+2)x,
    ∴eq \f(BC,BD)=eq \f((\r(3)+2)x,x)=eq \r(3)+2.
    ∴△ACB与△EDB的两直角边之比为eq \r(3)+2.
    【典例6】问题背景:如图(1),已知,求证:;
    尝试应用:如图(2),在和中,,,与相交于点.点在边上,,求的值;
    拓展创新:如图(3),是内一点,,,,,直接写出的长.

    【答案】23.问题背景:见详解;尝试应用:3;拓展创新:.
    【解析】
    【分析】
    问题背景:通过得到,,再找到相等的角,从而可证;
    尝试应用:连接CE,通过可以证得,得到,然后去证,,通过对应边成比例即可得到答案;
    拓展创新:在AD的右侧作∠DAE=∠BAC,AE交BD延长线于E,连接CE,通过,,然后利用对应边成比例即可得到答案.
    【详解】
    问题背景:∵,
    ∴∠BAC=∠DAE, ,
    ∴∠BAD+∠DAC=CAE+∠DAC,
    ∴∠BAD=∠CAE,
    ∴;
    尝试应用:连接CE,
    ∵,,
    ∴,
    ∴,
    ∵∠BAD+∠DAC=CAE+∠DAC,
    ∴∠BAD=∠CAE,
    ∴,
    ∴,
    由于,,
    ∴,
    即,
    ∵,
    ∴,
    ∵,,
    ∴,
    又∵,
    ∴,
    ∴,即,
    又∵
    ∴,
    ∴;
    拓展创新:
    如图,在AD的右侧作∠DAE=∠BAC,AE交BD延长线于E,连接CE,
    ∵∠ADE=∠BAD+∠ABD,∠ABC=∠ABD+∠CBD,,
    ∴∠ADE=∠ABC,
    又∵∠DAE=∠BAC,
    ∴,
    ∴,
    又∵∠DAE=∠BAC,
    ∴∠BAD=∠CAE,
    ∴,
    ∴,
    设CD=x,在直角三角形BCD中,由于∠CBD=30°,
    ∴,,
    ∴,
    ∴,
    ∵,
    ∴,

    【点睛】
    本题考查了相似三角形的综合问题,熟练掌握相似三角形的判定和性质是解题的关键.
    【典例7】以下虚线框中为一个合作学习小组在一次数学实验中的过程记录,请阅读后完成虚线框下方的问题.
    (1)在中,,在探究三边关系时,通过画图,度量和计算,收集到,组数据如下表:(单位:厘米)
    (2)根据学习函数的经验,选取上表中和的数据进行分析;
    设,以为坐标,在图所示的坐标系中描出对应的点;
    连线;
    观察思考
    (3)结合表中的数据以及所面的图像,猜想.当 时,最大;
    (4)进一步C猜想:若中,,斜边为常数,),则 时,最大.
    推理证明
    (5)对(4)中的猜想进行证明.
    问题1.在图中完善的描点过程,并依次连线;
    问题2.补全观察思考中的两个猜想: _______ _______
    问题3.证明上述中的猜想:
    问题4.图中折线是一个感光元件的截面设计草图,其中点间的距离是厘米,厘米,平行光线从区域射入,线段为感光区城,当的长度为多少时,感光区域长度之和最大,并求出最大值.
    【答案】问题1:见解析;问题2:2,;问题3:见解析;问题4:当时,感光区域长度之和最大为
    【解析】
    【分析】
    问题1:根据(1)中的表格数据,描点连线,作出图形即可;
    问题2:根据(1)中的表格数据,可以得知当2时,最大;设,则,可得,有,可得出;
    问题3:可用两种方法证明,方法一:(判别式法)设,则,可得,有,可得出;方法二:(基本不等式),设,得,可得,根据当时,等式成立有,可得出

    问题4:方法一:延长交于点,过点作于点,垂足为,过点作交于点,垂足为,交于点,由题可知:在中,,得,根据,有,得,易证四边形为矩形,四边形为矩形,根据可得,由问题3可知,当时,最大,则有时,最大为;方法二:
    延长相交于点同法一求得:,根据四边形为矩形,有,,得到,由问题3可知,当时,最大
    则可得时最大为.
    【详解】
    问题1:图
    问题2:;
    问题3:
    法一:(判别式法)
    证明:设
    在中,
    关于的元二次方程有实根,
    当取最大值时,
    当时,有最大值.
    法二:(基本不等式)

    在中,


    当时,等式成立


    当时,有最大值.
    问题4:
    法一:延长交于点
    过点作于点垂足为
    过点作交于点垂足为
    交于点
    由题可知:在中,



    在中,


    四边形为矩形

    四边形为矩形,
    在中,.
    由问题3可知,当时,最大
    时,最大为
    即当时,感光区域长度之和最大为
    法二:
    延长相交于点
    同法一求得:

    四边形为矩形,

    由问题3可知,当时,最大
    时最大为
    即当时,感光区域长度之和最大为.
    【点睛】
    本题考查了一元二次方程,二次函数,不等式,解直角三角形,三角函数,矩形的性质等知识点,熟悉相关性质是解题的关键.
    【典例8】如图①,直线l经过点(4,0)且平行于y轴,二次函数y=ax2﹣2ax+c(a、c是常数,a<0)的图象经过点M(﹣1,1),交直线l于点N,图象的顶点为D,它的对称轴与x轴交于点C,直线DM、DN分别与x轴相交于A、B两点.
    (1)当a=﹣1时,求点N的坐标及的值;
    (2)随着a的变化,的值是否发生变化?请说明理由;
    (3)如图②,E是x轴上位于点B右侧的点,BC=2BE,DE交抛物线于点F.若FB=FE,求此时的二次函数表达式.
    【答案】(1)N(4,﹣4),=;(2)不变,理由见解析;(3)y=﹣x2+x+或y=﹣x2+x+.
    【解析】
    【分析】
    (1)证明△DME∽△DAC,△DCB∽△DFN,则,,求出AC=,BC=,即可求解;
    (2)点D(1,1﹣4a),N(4,1+5a),则ME=2,DE=﹣4a,由(1)的结论得:AC=,BC=,即可求解;
    (3)利用△FHE∽△DCE,求出F(﹣,﹣),即可求解.
    【详解】
    解:(1)分别过点M、N作ME⊥CD于点E,NF⊥DC于点F,
    ∵ME∥FN∥x轴,
    ∴△DME∽△DAC,△DCB∽△DFN,
    ∴,,
    ∵a=﹣1,则y=﹣x2+2x+c,
    将M(﹣1,1)代入上式并解得:c=4,
    ∴抛物线的表达式为:y=﹣x2+2x+4,
    则点D(1,5),N(4,﹣4),
    则ME=2,DE=4,DC=5,FN=3,DF=9,
    ∴,解得:AC=,BC=,
    ∴=;
    (2)不变,理由:
    ∵y=ax2﹣2ax+c过点M(﹣1,1),则a+2a+c=1,
    解得:c=1﹣2a,
    ∴y=ax2﹣2ax+(1﹣3a),
    ∴点D(1,1﹣4a),N(4,1+5a),
    ∴ME=2,DE=﹣4a,
    由(1)的结论得:AC=,BC=,
    ∴=;
    (3)过点F作FH⊥x轴于点H,则FH∥l,则△FHE∽△DCE,
    ∵FB=FE,FH⊥BE,
    ∴BH=HE,
    ∵BC=2BE,
    则CE=6HE,
    ∵CD=1﹣4a,
    ∴FH=,
    ∵BC=,
    ∴CH=×=,
    ∴F(﹣,﹣),
    将点F的坐标代入y=ax2﹣2ax+(1﹣3a)=a(x+1)(x﹣3)+1得:
    ﹣a=a(﹣+1)(﹣﹣3)+1,
    解得:a=﹣或﹣,
    故y=﹣x2+x+或y=﹣x2+x+.
    【点睛】
    本题考查了相似三角形的判定与性质,二次函数的综合运用等知识.综合性强.

    相关试卷

    2022年中考数学专题复习类型五 与平移有关的探究题(解析版):

    这是一份2022年中考数学专题复习类型五 与平移有关的探究题(解析版),共11页。试卷主要包含了 平移的概念等内容,欢迎下载使用。

    2022年中考数学专题复习类型三 其他规律(解析版):

    这是一份2022年中考数学专题复习类型三 其他规律(解析版),共7页。试卷主要包含了数式归纳,图形变化归纳等内容,欢迎下载使用。

    2022年中考数学专题复习类型一 非动态探究题(解析版):

    这是一份2022年中考数学专题复习类型一 非动态探究题(解析版),共17页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map