2022年中考数学专题复习类型十二 二次函数与圆的问题(原卷版)
展开
这是一份2022年中考数学专题复习类型十二 二次函数与圆的问题(原卷版),共5页。
类型十二 二次函数与圆的问题【典例1】如图,抛物线y=ax2+x+c经过点A(﹣1,0)和点C (0,3)与x轴的另一交点为点B,点M是直线BC上一动点,过点M作MP∥y轴,交抛物线于点P.(1)求该抛物线的解析式;(2)在抛物线上是否存在一点Q,使得△QCO是等边三角形?若存在,求出点Q的坐标;若不存在,请说明理由;(3)以M为圆心,MP为半径作⊙M,当⊙M与坐标轴相切时,求出⊙M的半径. 【典例2】将抛物线向下平移6个单位长度得到抛物线,再将抛物线向左平移2个单位长度得到抛物线. (1)直接写出抛物线,的解析式;(2)如图(1),点在抛物线对称轴右侧上,点在对称轴上,是以为斜边的等腰直角三角形,求点的坐标;(3)如图(2),直线(,为常数)与抛物线交于,两点,为线段的中点;直线与抛物线交于,两点,为线段的中点.求证:直线经过一个定点. 【典例3】如图,在平面直角坐标系中,直线与x轴交于点A,与y轴交于点B,抛物线过点B且与直线相交于另一点.(1)求抛物线的解析式;(2)点P是抛物线上的一动点,当时,求点P的坐标;(3)点在x轴的正半轴上,点是y轴正半轴上的一动点,且满足.①求m与n之间的函数关系式;②当m在什么范围时,符合条件的N点的个数有2个? 【典例4】如图10-1,已知点P是抛物线上的一个点,点D、E的坐标分别为(0, 1)、(1, 2),连结PD、PE,求PD+PE的最小值.图10-1 【典例5】如图,在直角坐标系中,四边形OABC是平行四边形,经过A(﹣2,0),B,C三点的抛物线y=ax2+bx+(a<0)与x轴的另一个交点为D,其顶点为M,对称轴与x轴交于点E.(1)求这条抛物线对应的函数表达式;(2)已知R是抛物线上的点,使得△ADR的面积是▱OABC的面积的,求点R的坐标;(3)已知P是抛物线对称轴上的点,满足在直线MD上存在唯一的点Q,使得∠PQE=45°,求点P的坐标.
相关试卷
这是一份2022年中考数学专题复习类型十二 二次函数与圆的问题(解析版),共14页。
这是一份2022年中考数学专题复习类型三 二次函数与面积有关的问题(原卷版),共6页。
这是一份2022年中考数学专题复习类型十 二次函数与矩形有关的问题(原卷版),共6页。