初中数学苏科版七年级上册4.2 解一元一次方程知识点教学设计
展开
这是一份初中数学苏科版七年级上册4.2 解一元一次方程知识点教学设计,文件包含同步知识点讲义苏科版2021-2022学年七上第15讲解特殊类型的一元一次方程学生版doc、同步知识点讲义苏科版2021-2022学年七上第15讲解特殊类型的一元一次方程教师版doc等2份教案配套教学资源,其中教案共16页, 欢迎下载使用。
课程类型:新授课—衔接课年级:新初一学科:数学课程主题第4单元 第3节:解特殊类型的一元一次方程要点1:含字母系数的方程【要点梳理】1、含字母系数方程有关概念当方程中的系数用字母表示时,这样的方程叫做含字母系数的方程,也叫含参数的方程.2、常用的思想方法:分类讨论产生的原因→等式的性质②等式的性质②:等式两边都乘以(或除以)同一个数(除数不能是0)或同一个整式,所得结果仍是等式.若,则,.由等式的性质2,我们知道在等式两边同时除以某一个数时,必须确定此数不为0。若在不能确定的情况下,必须进行讨论3、分类讨论--解含字母系数方程含字母系数的一元一次方程总可以化为的形式,方程的解由、的取值范围确定.⑴当时,,原方程有唯一解;⑵当且时,解是任意数,原方程有无数解;⑶当且时,原方程无解.【典型例题】例1、(2019七上·兴化月考)关于x的方程ax+b=0的解得情况如下:当a≠0时,方程有唯一解x=- ;当a=0,b≠0时,方程无解;当a=0,b=0时,方程有无数解.若关于x的方程mx+ = -x有无数解,则m+n的值为( ) A. B. 1 C. 2 D. 以上答案都不对【答案】 B 例2、(2020七上·扬州期末)已知关于 的一元一次方程 的解为 ,那么关于 的一元二次方程 的解 =________.【答案】 -1 例3、(2019七上·江都月考)已知关于 x 的一次方程(3a+8)x+7=0 无解,则 9a2-3a-64 的值是________ 【答案】 8 例4、已知关于x的方程3a(x+2)=(2b-1)x+5有无数多个解,求a与b的值. 【答案】 解:去括号得:3ax+6a=(2b-1)x+5,
移项得:3ax-(2b-1)x=5-6a,
合并同类项得:(3a-2b+1)x=5-6a,
∵方程有无数个解,
∴,
解得:.
∴a=, b=. 【同步演练】1、(2019七上·港闸期末)已知关于x的一次方程(3a+4b)x+1=0无解,则ab的值为( ) A. 正数 B. 非正数 C. 负数 D. 非负数【答案】 B 2、(2019七上·镇江期末)已知关于 的一元一次方程 的解为 ,那么关于 的一元一次方程 的解为 ________. 【答案】 5 3、(2019七上·广陵月考)我们规定,若关于x的一元一次方程ax=b的解为b﹣a,则称该方程为“差解方程”,例如:3x=4.5的解为1.5,且1.5=4.5﹣3,则该方程3x=4.5是“差解方程”.若关于x的一元一次方程2x=m+2是“差解方程”,则m=________. 【答案】 2 要点2:含绝对值的方程【要点梳理】1、解法:我们知道,化简绝对值时,必须要先明确的正负性,当的正负性不能明确的时候,必须要进行讨论,即解绝对值方程的基本思想就是去绝对值,而去绝对值的基本思想就是分类讨论,基本方法就是“零点分段法”。2、方法1:零点分段法零点分段法的基本步骤:①找绝对值零点 ②零点分段讨论③分段求解方程④检验3、方法2:绝对值的几何意义“零点分段法”是解决绝对值方程的基本方法,但有的时候采用“零点分段法”的过程非常繁琐和复杂,所以有些类型的绝对值方程,我们可以采用“绝对值的几何意义”来求4、方法3:绝对值的非负性形如型的绝对值方程的解法:①根据绝对值的非负性可知,求出的取值范围;②若的取值范围能够确定的正,负情况,则直接去掉绝对值③若的取值范围不能确定的正,负情况,则将原方程化为两个方程和;④分别解方程和;⑤将求得的解代入检验,舍去不合条件的解.当然解方程还常用到整体代入法【典型例题】例1、(2019七上·东台期中)如果(a﹣b)x=︱a﹣b︱的解是x=﹣1,那么( ) A. a=b B. a>b C. a<b D. a≠b【答案】 C 例2、适合关系式|x+|+|x﹣|=2的整数解x的个数是( )A. 0个 B. 1个 C. 2个 D. 3个【答案】 C 例3、阅读下列解方程的过程,并完成(1)、(2)小题的解答.解方程:|x﹣1|=2解:当x﹣1<0,即x<1时,原方程可化为:﹣(x﹣1)=2,解得x=﹣1;当x﹣1≥0,即x≥1时,原方程可化为:x﹣1=2,解得x=3;综上所述,方程|x﹣1|=2的解为x=﹣1或x=3.(1)解方程:|2x+3|=8.(2)解方程:|2x+3|﹣|x﹣1|=1.【答案】 解:(1)当x<﹣时,原方程等价于2x+3=﹣8,解得x=﹣;当x≥﹣时,原方程等价于2x+3=8,解得x=;综上所述,方程|2x+3|=8的解为x=﹣或x=. (2)当x<﹣时,原方程等价于﹣x﹣4=1,解得x=﹣5;当﹣≤x<1时,原方程等价于3x+2=1,解得x=﹣;当x≥1时,原方程等价于x+4=1,解得x=﹣3,(不符合题意,舍);综上所述,方程:|2x+3|﹣|x﹣1|=1的解为x=﹣5或x=﹣. 例4、(1)阅读下面材料:点A,B在数轴上分别表示实数a,b,A,B两点之间的距离表示为|AB|.当A,B两点中有一点在原点时,不妨设点A在原点,如图(1),|AB|=|OB|=|b|=|a﹣b|;当A,B两点都不在原点时,①如图(2),点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;②如图(3),点A,B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;③如图(4),点A,B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a﹣b|;综上,数轴上A,B两点之间的距离|AB|=|a﹣b|.(2)回答下列问题:①数轴上表示2和5的两点之间的距离是________ ,数轴上表示﹣2和﹣5的两点之间的距离是 3 ,数轴上表示1和﹣3的两点之间的距离是________ ;②数轴上表示x和﹣1的两点A和B之间的距离是________ ,如果|AB|=2,那么x为________ ;③当代数式|x+1|+|x﹣2|取最小值时,相应的x的取值范围是________ .④当x=________ 时,|x+1|+|x﹣2|=5. 【答案】 3;4;|x+1|;±2;﹣1≤x≤2 ;3或﹣2 【同步演练】1、方程的解是( )A. x=1或x=- B. x=﹣1或x=- C. x=﹣1或x= D. x=1或x=【答案】 A 2、阅读下面的解题过程:解方程:|x+3|=2.解:当x+3≥0时,原方程可化成为x+3=2解得x=﹣1,经检验x=﹣1是方程的解;当x+3<0,原方程可化为,﹣(x+3)=2解得x=﹣5,经检验x=﹣5是方程的解.所以原方程的解是x=﹣1,x=﹣5.解答下面的两个问题:(1)解方程:|3x﹣2|﹣4=0;(2)探究:当值a为何值时,方程|x﹣2|=a,①无解;②只有一个解;③有两个解.【答案】 解:(1)当3x﹣2≥0时,原方程可化为3x﹣2=4,解得x=2,经检验x=2是方程的解;当3x﹣2<0时,原方程可化为﹣(3x﹣2)=4,解得x=﹣, 经检验x=﹣是方程的解;所以原方程的解是x=2,x=﹣. (2)因为|x﹣2|≥0,所以,当a<0时,方程无解;当a=0时,方程只有一个解;当a>0时,方程有两个解.3、(1)若|x+5|=2,则x=________; (2)代数式|x﹣1|+|x+3|的最小值为________,当取此最小值时,x的取值范围是______; (3)解方程:|2x+4|﹣|x﹣3|=9. 【答案】 (1)﹣3或﹣7
(2)4;﹣3≤x≤1
(3)解:当x≤﹣2时,原方程可化为:﹣2x﹣4+x﹣3=9,解得:x=﹣16,当x≥3时,原方程可化为:2x+4﹣x+3=9,解得:x=2与x≥3不符;当﹣2<x<3时,原方程可化为:2x+4+x﹣3=9,解得:x= .综上所述,方程的解为:x=﹣16或x= 【课后巩固】1、(2018七上·宿迁期末)| x-2 |+3=4,下列说法正确的是( ) A. 解为3 B. 解为1 C. 其解为1或3 D. 以上答案都不对【答案】 C 2、方程|2x﹣4|=0的解是( )A. 2 B. ﹣2 C. ±2 D. 【答案】 A 3、方程|x﹣3|+|x+3|=6的解的个数是( )A. 2 B. 3 C. 4 D. 无数个【答案】 D 4、关于x的方程mx+1=2(m﹣x)的解满足|x+2|=0,则m的值为( )A. B. - C. D. -【答案】 D 5、有下列结论:①若a+b+c=0,则abc≠0;②若a(x﹣1)=b(x﹣1)有唯一的解,则a≠b;③若b=2a,则关于x的方程ax+b=0(a≠0)的解为x=﹣;④若a+b+c=1,且a≠0,则x=1一定是方程ax+b+c=1的解;其中结论正确的个数有( )A. 4个 B. 3个 C. 2个 D. 1个【答案】 C 6、(2020七上·高新期中)a、b、c、d为互不相等的有理数,且c=2,|a−c|=|b−c|=|d−b|=1,则a+b+c+d=________. 【答案】 6或10 7、(2019七上·兴化月考)若关于x的一元一次方程 的解为 ,则关于y的一元一次方程 的解为y= ________. 【答案】 -3 8、(2019七上·海安期中)已知 ,则 的值为________ 【答案】 1或2 9、一列方程如下排列: =1的解是x=2, + =1的解是x=3, + =1的解是x=﹣4,…根据观察得到的规律,写出其中解是x=6的方程:________.【答案】 + =1 10、(2019七上·扬州月考)已知方程 是关于 的一元一次方程. (1)求 和 的值. (2)若 满足关系式 ,求 的值. 【答案】 (1)解:根据一元一次方程的定义:3m-4=0, . 代入方程:-x-4× =-2× ,解得:x=
(2)解:将 代入得: 解得: 或 .11、阅读理解:在解形如3|x﹣2|=|x﹣2|+4这一类含有绝对值的方程时,我们可以根据绝对值的意义分x<2和x≥2两种情况讨论:①当x<2时,原方程可化为﹣3(x﹣2)=﹣(x﹣2)+4,解得:x=0,符合x<2②当x≥2时,原方程可化为3(x﹣2)=(x﹣2)+4,解得:x=4,符合x≥2∴原方程的解为:x=0,x=4.解题回顾:本题中2为x﹣2的零点,它把数轴上的点所对应的数分成了x<2和x≥2两部分,所以分x<2和x≥2两种情况讨论.知识迁移:(1)运用整体思想先求|x﹣3|的值,再去绝对值符号的方法解方程:|x﹣3|+8=3|x﹣3|;知识应用:(2)运用分类讨论先去绝对值符号的方法解类似的方程:|2﹣x|﹣3|x+1|=x﹣9.提示:本题中有两个零点,它们把数轴上的点所对应的数分成了几部分呢?【答案】 (1)解:移项得|x﹣3|﹣3|x﹣3|=﹣8,合并得﹣2|x﹣3|=﹣8,两边除以﹣2得|x﹣3|=4,所以x﹣3=±4,∴x=﹣1或7
(2)解:当x≤﹣1,原方程可化为2﹣x+3(x+1)=x﹣9,解得x=﹣14,符合x≤﹣1;当﹣1<x≤2,原方程可化为2﹣x﹣3(x+1)=x﹣9,解得x=, 符合﹣1<x≤2;当x>2,原方程可化为﹣2+x+3(x+1)=x﹣9,解得x=,不符合x>2;∴原方程的解为x=﹣14或x=. 12、阅读下列解方程的过程,并完成(1)、(2)小题的解答.解方程:|x﹣1|=2解:当x﹣1<0,即x<1时,原方程可化为:﹣(x﹣1)=2,解得x=﹣1;当x﹣1≥0,即x≥1时,原方程可化为:x﹣1=2,解得x=3;综上所述,方程|x﹣1|=2的解为x=﹣1或x=3.(1)解方程:|2x+3|=8(2)解方程:|2x+3|﹣|x﹣1|=1.【答案】 (1)解:当x<﹣时,原方程等价于2x+3=﹣8,解得x=﹣;当x≥﹣时,原方程等价于2x+3=8,解得x=;综上所述,方程|2x+3|=8的解为x=﹣或x=.
(2)当x<﹣时,原方程等价于﹣x﹣4=1,解得x=﹣5;当﹣≤x<1时,原方程等价于3x+2=1,解得x=﹣;当x≥1时,原方程等价于x+4=1,解得x=﹣3,(不符合题意,舍);综上所述,方程:|2x+3|﹣|x﹣1|=1的解为x=﹣5或x=﹣.
相关教案
这是一份初中数学6.1 线段 射线 直线知识点教案设计,文件包含同步知识点讲义苏科版2021-2022学年七上第22讲直线线段射线学生版doc、同步知识点讲义苏科版2021-2022学年七上第22讲直线线段射线教师版doc等2份教案配套教学资源,其中教案共14页, 欢迎下载使用。
这是一份初中数学苏科版七年级上册6.4 平行知识点教案设计,文件包含同步知识点讲义苏科版2021-2022学年七上第25讲平行与垂直学生版doc、同步知识点讲义苏科版2021-2022学年七上第25讲平行与垂直教师版doc等2份教案配套教学资源,其中教案共17页, 欢迎下载使用。
这是一份初中数学苏科版七年级上册5.3 展开与折叠知识点教案,文件包含同步知识点讲义苏科版2021-2022学年七上第20讲展开与折叠学生版doc、同步知识点讲义苏科版2021-2022学年七上第20讲展开与折叠教师版doc等2份教案配套教学资源,其中教案共14页, 欢迎下载使用。