搜索
    上传资料 赚现金
    人教版高中数学必修第二册同步讲解第10章《章末复习课》(含解析)学案
    立即下载
    加入资料篮
    人教版高中数学必修第二册同步讲解第10章《章末复习课》(含解析)学案01
    人教版高中数学必修第二册同步讲解第10章《章末复习课》(含解析)学案02
    人教版高中数学必修第二册同步讲解第10章《章末复习课》(含解析)学案03
    还剩6页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教A版 (2019)必修 第二册第十章 概率本章综合与测试导学案

    展开
    这是一份人教A版 (2019)必修 第二册第十章 概率本章综合与测试导学案,共9页。


    【例1】 (1)下列命题:①将一枚硬币抛两次,设事件M:“两次出现正面”,事件N:“只有一次出现反面”,则事件M与N互为对立事件;②若事件A与B互为对立事件,则事件A与B为互斥事件;③若事件A与B为互斥事件,则事件A与B互为对立事件;④若事件A与B互为对立事件,则事件A∪B为必然事件,其中,真命题是( )
    A.①②④ B.②④
    C.③④ D.①②
    (2)某商场有奖销售中,购满100元商品得1张奖券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A,B,C,求:
    ①P(A),P(B),P(C);
    ②1张奖券的中奖概率;
    ③1张奖券不中特等奖且不中一等奖的概率.
    (1)B [对①,一枚硬币抛两次,共出现{正,正},{正,反},{反,正},{反,反}四种结果,则事件M与N是互斥事件,但不是对立事件,故①错;对②,对立事件首先是互斥事件,故②正确;对③,互斥事件不一定是对立事件,如①中两个事件,故③错;对④,事件A,B为对立事件,则一次试验中A,B一定有一个要发生,故④正确.故选B.]
    (2)[解] ①P(A)=eq \f(1,1 000),P(B)=eq \f(10,1 000)=eq \f(1,100),P(C)=eq \f(50,1 000)=eq \f(1,20).
    故事件A,B,C的概率分别为eq \f(1,1 000),eq \f(1,100),eq \f(1,20).
    ②1张奖券中奖包含中特等奖、一等奖、二等奖.设“1张奖券中奖”这个事件为M,则M=A∪B∪C. ∵A,B,C两两互斥,
    ∴P(M)=P(A∪B∪C)=P(A)+P(B)+P(C)=eq \f(1+10+50,1 000)=eq \f(61,1 000).
    故1张奖券的中奖概率为eq \f(61,1 000).
    ③设“1张奖券不中特等奖且不中一等奖”为事件N,则事件N与“1张奖券中特等奖或中一等奖”为对立事件,
    ∴P(N)=1-P(A∪B)=1-eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,1 000)+\f(1,100)))=eq \f(989,1 000).
    故1张奖券不中特等奖且不中一等奖的概率为eq \f(989,1 000).
    求复杂的互斥事件的概率一般有两种方法:一是直接求解法,将所求事件的概率分解为一些彼此互斥的事件的概率的和;二是间接法,先求该事件的对立事件的概率,再由P(A)=1-P(eq \x\t(A))求解.当题目涉及“至多”“至少”型问题,多考虑间接法.
    1.袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率是eq \f(1,3),得到黑球或黄球的概率是eq \f(5,12),得到黄球或绿球的概率也是eq \f(5,12),试求得到黑球、黄球和绿球的概率各是多少?
    [解] 法一:从袋中选取一个球,记事件“摸到红球”“摸到黑球”“摸到黄球”“摸到绿球”分别为A,B,C,D,则有P(A)=eq \f(1,3),P(B∪C)=P(B)+P(C)=eq \f(5,12),
    P(C∪D)=P(C)+P(D)=eq \f(5,12),P(B∪C∪D)=P(B)+P(C)+P(D)=1-P(A)=1-eq \f(1,3)=eq \f(2,3),
    解得P(B)=eq \f(1,4),P(C)=eq \f(1,6),P(D)=eq \f(1,4),因此得到黑球、黄球、绿球的概率分别是eq \f(1,4),eq \f(1,6),eq \f(1,4).
    法二:设红球有n个,则eq \f(n,12)=eq \f(1,3),所以n=4,即红球有4个.
    又得到黑球或黄球的概率是eq \f(5,12),所以黑球和黄球共5个.
    又总球数是12,所以绿球有12-4-5=3(个).
    又得到黄球或绿球的概率也是eq \f(5,12),所以黄球和绿球共5个,而绿球有3个,
    所以黄球有5-3=2(个).所以黑球有12-4-3-2=3(个).
    因此得到黑球、黄球、绿球的概率分别是eq \f(3,12)=eq \f(1,4),eq \f(2,12)=eq \f(1,6),eq \f(3,12)=eq \f(1,4).
    【例2】 袋中有形状、大小都相同的4个小球,
    (1)若4个小球中有1只白球,1只红球,2只黄球,从中一次随机摸出2只球,求这2只球颜色不同的概率;
    (2)若4个小球颜色相同,标号分别为1,2,3,4,从中一次取两球,求标号和为奇数的概率;
    (3)若4个小球中有1只白球,1只红球,2只黄球,有放回地取球,取两次,求两次取得球的颜色相同的概率.
    [解] (1)设取出的2只球颜色不同为事件A.
    试验的样本空间Ω= {(白,红),(白,黄1),(白,黄2),(红,黄1),(红,黄2),(黄1,黄2)},共6个样本点,事件A包含5个样本点,故P(A)=eq \f(5,6).
    (2)试验的样本空间Ω= {(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)},共6个样本点,设标号和为奇数为事件A,则A包含的样本点为(1,2),(1,4),(2,3),(3,4),共4个,
    所以P(A)=eq \f(4,6)=eq \f(2,3).
    (3)试验的样本空间Ω= {(白,白),(白,红),(白,黄1),(白,黄2),(红,红),(红,白),(红,黄1),(红,黄2),(黄1,黄1),(黄1,白),(黄1,红),(黄1,黄2),(黄2,黄2),(黄2,白),(黄2,红),(黄2,黄1)},共16个样本点,其中颜色相同的有6个,故所求概率为P=eq \f(6,16)=eq \f(3,8).
    求古典概型的概率的关键是求试验的样本点的总数和事件A包含的样本点的个数,这就需要正确求出试验的样本空间,样本空间的表示方法有列举法、列表法和树形图法,具体应用时可根据需要灵活选择.
    2.设连续掷两次骰子得到的点数分别为m,n,
    令平面向量a=(m,n),b=(1,-3).
    (1)求使得事件“a⊥b”发生的概率;
    (2)求使得事件“|a|≤|b|”发生的概率.
    [解] (1)由题意知,m∈{1,2,3,4,5,6},n∈{1,2,3,4,5,6},故(m,n)所有可能的取法共36种.
    a⊥b,即m-3n=0,即m=3n,共有2种:(3,1),(6,2),
    所以事件a⊥b的概率为eq \f(2,36)=eq \f(1,18).
    (2)|a|≤|b|,即m2+n2≤10,共有(1,1),(1,2),(1,3),(2,1),(2,2),(3,1)6种,其概率为eq \f(6,36)=eq \f(1,6).
    【例3】 在一场娱乐晚会上,有5位民间歌手(1到5号)登台演唱,由现场数百名观众投票选出最受欢迎歌手.各位观众须彼此独立地在选票上选3名歌手,其中观众甲是1号歌手的歌迷,他必选1号,不选2号,另在3至5号中随机选2名.观众乙和丙对5位歌手的演唱没有偏爱,因此在1至5号中选3名歌手.
    (1)求观众甲选中3号歌手且观众乙未选中3号歌手的概率;
    (2)X表示3号歌手得到观众甲、乙、丙的票数之和,求“X≥2”的事件概率.
    [解] (1)设A表示事件“观众甲选中3号歌手”,观众甲选出3名歌手的样本空间Ω={(1,3,4),(1,3,5),(1,4,5)},事件A包含2个样本点,则P(A)=eq \f(2,3),
    设B表示事件“观众乙选中3号歌手”, 观众乙选出3名歌手的样本空间
    Ω={(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5)},事件B包含6个样本点,则P(B)=eq \f(6,10)=eq \f(3,5).
    ∵事件A与B相互独立,A与eq \x\t(B)相互独立,则A·eq \x\t(B)表示事件“甲选中3号歌手,且乙没选中3号歌手”.∴P(Aeq \x\t(B))=P(A)·P(eq \x\t(B))=P(A)·[1-P(B)]=eq \f(2,3)×eq \f(2,5)=eq \f(4,15).
    即观众甲选中3号歌手且观众乙未选中3号歌手的概率是eq \f(4,15).
    (2)设C表示事件“观众丙选中3号歌手”,则P(C)=P(B)=eq \f(3,5),
    依题意,A,B,C相互独立,eq \x\t(A),eq \x\t(B),eq \x\t(C)相互独立,
    且ABeq \x\t(C),Aeq \x\t(B)C,eq \x\t(A)BC,ABC彼此互斥.
    又P(X=2)=P(ABeq \x\t(C))+P(Aeq \x\t(B)C)+P(eq \x\t(A)BC)=eq \f(2,3)×eq \f(3,5)×eq \f(2,5)+eq \f(2,3)×eq \f(2,5)×eq \f(3,5)+eq \f(1,3)×eq \f(3,5)×eq \f(3,5)=eq \f(33,75),
    P(X=3)=P(ABC)=eq \f(2,3)×eq \f(3,5)×eq \f(3,5)=eq \f(18,75),
    ∴P(X≥2)=P(X=2)+P(X=3)=eq \f(33,75)+eq \f(18,75)=eq \f(17,25).
    相互独立事件中求复杂事件概率的解题思路
    (1)将待求复杂事件转化为几个彼此互斥的简单事件的和.
    (2)将彼此互斥简单事件中的简单事件,转化为几个已知(易求)概率的相互独立事件的积事件.
    (3)代入概率的积、和公式求解.
    3.投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A,“骰子向上的点数为奇数”为事件B,则事件A,B中至少有一件发生的概率是( )
    A.eq \f(5,12) B.eq \f(1,2)
    C.eq \f(7,12) D.eq \f(3,4)
    D [P(A)=eq \f(1,2),P(B)=eq \f(1,2),P(eq \x\t(A))=eq \f(1,2),P(eq \x\t(B))=eq \f(1,2).
    A,B中至少有一件发生的概率为1-P(eq \x\t(A))·P(eq \x\t(B))=1-eq \f(1,2)×eq \f(1,2)=eq \f(3,4),故选D.]
    【例4】 某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工.根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为:[40,50),[50,60),…,[80,90),[90,100].
    (1)求频率分布直方图中a的值;
    (2)估计该企业的职工对该部门评分不低于80的概率;
    (3)从评分在[40,60)的受访职工中,随机抽取2人,求此2人的评分都在[40,50)的概率.
    [解] (1)因为(0.004+a+0.018+0.022×2+0.028)×10=1,所以a=0.006.
    (2)由所给频率分布直方图知,50名受访职工评分不低于80的频率为(0.022+0.018)×10=0.4,所以该企业职工对该部门评分不低于80的概率的估计值为0.4.
    (3)受访职工中评分在[50,60)的有:50×0.006×10=3(人),记为A1,A2,A3;
    受访职工中评分在[40,50)的有:50×0.004×10=2(人),记为B1,B2.
    从这5名受访职工中随机抽取2人,试验的样本空间Ω={(A1,A2),(A1,A3),(A1,B1),(A1,B2),(A2,A3),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(B1,B2)},共10个样本点.又因为所抽取2人的评分都在[40,50)的结果有1种,即(B1,B2),故所求的概率为eq \f(1,10).
    破解概率与统计图表综合问题的三个步骤
    第一步:会读图,能读懂已知统计图表所隐含的信息,并会进行信息提取.
    第二步:会转化,对文字语言较多的题目,需要根据题目信息耐心阅读,步步实现文字语言与符号语言间的转化.
    第三步:会运算,对统计图表所反馈的信息进行提取后,结合古典概型的概率公式进行运算.
    4.海关对同时从A,B,C三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如下表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.
    (1)求这6件样品中来自A,B,C各地区商品的数量;
    (2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.
    [解] (1)因为样本容量与总体中的个体数的比是eq \f(6,50+150+100)=eq \f(1,50),
    所以样本中包含三个地区的个体数量分别是50×eq \f(1,50)=1,150×eq \f(1,50)=3,100×eq \f(1,50)=2.
    所以A,B,C三个地区的商品被选取的件数分别是1,3,2.
    (2)设6件来自A,B,C三个地区的样品分别为:A;B1,B2,B3;C1,C2.
    则从6件样品中抽取2件商品,试验的样本空间Ω={(A,B1),(A,B2),(A,B3),(A,C1),(A,C2),(B1,B2),(B1,B3),(B1,C1),(B1,C2),(B2,B3),(B2,C1),(B2,C2),(B3,C1),(B3,C2),(C1,C2),共15个样本点.
    每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的.
    记事件D:“抽取的这2件商品来自相同地区”,则事件D包含的样本点有:(B1,B2),(B1,B3),(B2,B3),(C1,C2),共4个.所以P(D)=eq \f(4,15),即这2件商品来自相同地区的概率为eq \f(4,15).
    随机事件的关系与性质
    古典概型
    相互独立事件的概率
    概率统计的综合应用
    地区
    A
    B
    C
    数量
    50
    150
    100
    相关学案

    人教A版 (2019)必修 第二册10.3 频率与概率学案: 这是一份人教A版 (2019)必修 第二册10.3 频率与概率学案,共8页。

    人教A版 (2019)必修 第二册第九章 统计本章综合与测试学案及答案: 这是一份人教A版 (2019)必修 第二册第九章 统计本章综合与测试学案及答案,共5页。

    高中数学人教A版 (2019)必修 第二册第八章 立体几何初步本章综合与测试导学案: 这是一份高中数学人教A版 (2019)必修 第二册第八章 立体几何初步本章综合与测试导学案,共9页。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        人教版高中数学必修第二册同步讲解第10章《章末复习课》(含解析)学案
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map