


高中数学第三章 数学建模活动(二)2 测量和自选建模作业的汇报交流学案设计
展开
这是一份高中数学第三章 数学建模活动(二)2 测量和自选建模作业的汇报交流学案设计,共6页。
§1 建筑物高度的测量§2 测量和自选建模作业的汇报交流学 习 任 务核 心 素 养1.了解数学建模的意义.2.了解数学建模的基本过程.(重点)3.能够利用或建立解三角形模型解决关于高度测量的实际问题.(难点、重点)1.经历数学建模的过程,培养数学抽象与数据分析素养.2.通过数学建模解决实际问题的过程,提升数学运算、逻辑推理与直观想象素养. 前面我们学完了正弦、余弦定理,并对正弦、余弦定理的应用举例做了了解,两个定理的应用非常广泛,可以与三角函数、平面向量等知识综合命题,也可以在现实生活中利用与正弦、余弦定理相关的知识解决问题,那么如何建立解三角形的模型解决问题呢?知识点1 数学建模的概念把现实世界中的实际问题加以提炼,抽象为数学模型,求出模型的解,验证模型的合理性,并用该模型所提供的解答来解释现实问题,我们把数学知识的这一应用过程称为数学建模.知识点2 正弦、余弦定理在实际测量中的应用的一般步骤(1)分析:理解题意,分清已知与未知,画出示意图;(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解三角形的数学模型;(3)求解:利用正弦定理或余弦定理有序地解三角形,求得数学模型的解;(4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解.测量底部不能到达的建筑物的高度时,往往需要在经过建筑物底部的水平面内引一条基线.(1)当基线CD与建筑物AB在同一铅垂面内时,如图,需要测量哪些数据?如何计算该建筑物的高度?[提示] 测量出基线CD的长及在C,D处建筑物AB顶部点A的仰角的度数,在Rt△ABD中,BD=,在Rt△ABC中,BC=,∴a=CD=BC-BD=-.∴AB=.(2)当基线CD与建筑物AB不在同一铅垂面内时,如图,需要测量哪些数据?如何计算该建筑物的高度?[提示] 测量出基线CD的长及在C处建筑物AB顶部点A的仰角的度数,在平面BCD内,测量出∠BCD与∠BDC的度数.在△BCD中,BC=×sin D.∵AB⊥BC ,∴∠BAC=-∠ACB.∴在△ABC中,AB=×sin ∠ACB=×sin ∠ACB.∴AB=×sin ∠ACB=. 类型1 基线与建筑物在同一铅垂面内【例1】 如图所示,在山顶铁塔上B处测得地面上一点A的俯角为α,在塔底C处测得A处的俯角为β.已知铁塔BC部分的高为h,求出山高CD.[解] 在△ABC中,∠BCA=90°+β,∠ABC=90°-α,∠BAC=α-β,∠CAD=β.根据正弦定理得=,即=,∴AC==.在Rt△ACD中,CD=AC sin ∠CAD=AC sin β=.所以,山的高度为.解三角应用题的一般步骤(1)准确理解题意,分清已知和所求,尤其要理解应用题中的名词和术语;(2)画出示意图,并在图形中标注出已知条件;(3)若已知量与未知量涉及多个三角形,则需要利用正弦定理或余弦定理有序地解三角形,并作答.1.某登山队在山脚A处测得山顶B的仰角为35°,沿倾斜角为20°的斜坡前进1000米后到达D处,又测得山顶的仰角为65°,求山的高度.(精确到1m.≈1.4142,sin 35°≈0.5736).[解] 过点D作DE∥AC交BC于E,因为∠DAC=20°,所以∠ADE=160°,于是∠ADB=360°-160°-65°=135°.又∠BAD=35°-20°=15°,所以∠ABD=30°.在△ABD中,由正弦定理得,AB==1000(m).在Rt△ABC中,BC=AB sin 35°≈811(m).所以,山的高度约为811m. 类型2 基线与建筑物不在同一铅垂面内【例2】 如图所示,A、B是水平面上的两个点,相距800 m,在A点测得山顶C的仰角为45°,∠BAD=120°,又在B点测得∠ABD=45°,其中D点是点C到水平面的垂足,求山高CD.[解] 由于CD⊥平面ABD,∠CAD=45°,所以CD=AD.因此只需在△ABD中求出AD即可,在△ABD中,∠BDA=180°-45°-120°=15°,由=,得AD===800(+1)(m).所以,山的高度为800(+1)m.测量高度时,要准确理解仰角、俯角的数学含义.它是将实际问题转化为数学问题的关键.2.如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D在西偏北30°的方向上,行驶600 m后到达B处,测得此山顶在西偏北75°的方向上,仰角为30°,求此山的高度CD.[解] 依题意,∠CAB=30°,AB=600 m,∠CBA=180°-75°=105°,∠CBD=30°,∴∠ACB=180°-30°-105°=45°.由正弦定理,得BC=·sin ∠CAB=×sin 30°=300,∴CD=BC tan ∠CBD=300×tan 30°=100(m).所以,山的高为100m.1.如图,AB是底部B不可到达的一个建筑物,A为建筑物的最高点,设计一种测量建筑物高度AB的方法.[解] 选择一条水平基线HG,使H、G、B三点在同一条直线上.由在G,H两点用测角仪器测得A的仰角分别是α,β,CD=a,测角仪器的高是h.那么,在△ACD中,根据正弦定理可得AC=,AB=AE+h=AC sin α+h=+h.所以,该建筑物高度AB为+h.2.要测量底部不能到达的东方明珠电视塔的高度,在黄浦江西岸选择甲、乙两观测点,在甲、乙两点分别测得塔顶的仰角分别为45°,30°,在水平面上测得电视塔与甲地连线及甲、乙两地连线所成的角为120°,甲、乙两地相距500m,求电视塔的高度.[解] 由题意画出示意图,设高AB=h,在Rt△ABC中,由已知BC=h,在Rt△ABD中,由已知BD=h,在△BCD中,由余弦定理得BD2=BC2+CD2-2BC·CD·cos ∠BCD,即3h2=h2+5002+h·500,解得h=500.所以,电视塔的高度为500m.3.为了测量两山顶M,N间的距离,飞机沿水平方向在A,B两点进行测量,A,B,M,N在同一个铅垂平面内(如图所示).飞机能够测量的数据有俯角和A,B间的距离.请设计一个方案:包括:①指出需要测量的数据(用字母表示,并在图中标出);②用文字和公式写出计算M,N间的距离的步骤.[解] 方案1:①需要测量的数据有:A点到M,N点的俯角α1,β1;B点到M,N点的俯角α2,β2;A,B的距离d(如图所示).②第一步:计算AM,由正弦定理,得AM=;第二步:计算AN,由正弦定理,得AN=;第三步:计算MN,由余弦定理得:MN=.方案2:①需要测量的数据有:A点到M,N点的俯角α1,β1;B点到M,N点的俯角α2,β2;A,B的距离d(如图所示).②第一步:计算BM,由正弦定理,得BM=;第二步:计算BN,由正弦定理,得BN=;第三步:计算MN,由余弦定理得:MN=.4.某人在塔的正东方沿着南偏西60°的方向前进40 m以后,望见塔在东北方向.若沿途测得塔的最大仰角为30°,求塔的高度.[解] 在△BCD中,CD=40m,∠BCD=90°-60°=30°,∠DBC=45°+90°=135°.由正弦定理,得=,∴BD===20(m).在Rt△ABE中,tan ∠AEB=,AB为定值,故要使∠AEB最大,需要BE最小,即BE⊥CD,这时∠AEB=30°.在△BCD中,∠BDE=180°-135°-30°=15°,∴BE=BD·sin ∠BDE=20sin 15°=10(-1)(m).在Rt△ABE中,AB=BE tan ∠AEB=10(-1)·tan 30°=(3-)(m).所以,塔的高度为(3-)m.
相关学案
这是一份高中数学北师大版 (2019)必修 第一册2 数学建模的主要步骤学案设计,共2页。
这是一份北师大版 (2019)必修 第二册1 建筑物高度的测量学案,共5页。
这是一份高中数学北师大版 (2019)必修 第一册1 走进数学建模导学案,共2页。学案主要包含了学习目标,学习重难点,学习过程,学习小结等内容,欢迎下载使用。