八年级上册14.1 平方根多媒体教学ppt课件
展开这是一份八年级上册14.1 平方根多媒体教学ppt课件,共17页。PPT课件主要包含了课件说明,的算术平方根是0,负数没有算术平方根,或x-3,-32=9,平方根定义,求平方,求平方根,负数没有平方根,平方根的性质等内容,欢迎下载使用。
学习目标:(1)了解平方根的概念;掌握平方根的特征.(2)能利用开平方与平方互为逆运算的关系, 求某些非负数的平方根.学习重点:平方根的概念.
(1)什么是算术平方根?怎样表示?
如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根.
a的算术平方根表示为:
(2)256的算术平方根是 ,5的算术平方根是 .
(3)下列各式有意义的条件是什么?
(4) ①一块正方形菜地的边长是3米,这块菜地的面积是多少平方米?②已知一块正方形菜地的面积是9平方米,求它的边长.③如果一个数的平方等于9,这个数是多少?
如果一个数的平方等于9,那么这个数是多少?
∴平方等于9的数是3或-3.
3或-3可以简单记作:±3.
一般地,如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根,这就是说,如果x2=a,那么x叫做a的平方根.
例如:3和-3是9的平方根,简记为±3是9的平方根.
平方与开平方互为逆运算!
求一个数a的平方根的运算,叫做开平方.
解:(1) ∵(±10)2=100, ∴100的平方根是±10;
(3) ∵(±0.5)2=0.25, ∴0.25的平方根是±0.5.
1.一个正数有几个平方根? 它们有什么特点?2.0有几个平方根?是多少?3.负数呢?
1.正数的平方根有两个,它们互为相反数.
2.0有一个平方根,它是0本身.
正数有2个平方根,它们互为相反数;0的平方根是0;负数没有平方根.
读作 “正、负根号a”
25的平方根是±5,用符号语言表达为:
正数a的算术平方根的相反数(即正数a的负的平方根)
例如:9的平方根是±3,用符号语言表达为:
1.平方根包括算术平方根,算术平方根是平方根中非负的那一个.2.存在条件相同.只有非负数才有平方根和算术平方根.3.0的平方根和算术平方根均为0
正数a的算术平方根有一个
如果一个正数x的平方等于a,那么这个正数就叫做a的算术平方根
如果一个数的平方等于a,这个数就叫做a的平方根
平方根与算术平方根的比较
例5. 求下列各式的值.
4.计算下列各式的值:
3.如果一个正数的平方根是a-1和a+3,则a=____,
本节课你学习了哪些知识?在探索知识的过程中,你用了哪些方法?对你今后的学习有什么帮助?
解下列方程:(1)4x2=9;(2)x2-81=0;(3)(x+1)2=1.
相关课件
这是一份初中数学冀教版八年级上册14.1 平方根教课ppt课件,共19页。
这是一份冀教版14.1 平方根图片课件ppt,
这是一份冀教版八年级上册14.1 平方根授课课件ppt,共20页。