高中数学人教A版必修第一册4.5.2 用二分法求方程的近似解课时作业含解析 练习
展开
这是一份高中数学人教A版必修第一册4.5.2 用二分法求方程的近似解课时作业含解析,共1页。
[对应学生用书P73]
知识点1 二分法的定义
对于在区间[a,b]上图象连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把它的零点所在的区间一分为二,使所得区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.
[微思考]
若函数y=f(x)在定义域内有零点,该零点是否一定能用二分法求解?
提示:二分法只适用于函数的变号零点(即函数在零点两侧符号相反),因此函数在零点两侧同号的零点不能用二分法求解,如f(x)=(x-1)2的零点就不能用二分法求解.
知识点2 二分法的步骤
给定精确度ε,用二分法求函数f(x)零点x0的近似值的一般步骤如下:
(1)确定零点x0的初始区间[a,b],验证f(a)·f(b)<0.
(2)求区间(a,b)的中点c.
(3)计算f(c),并进一步确定零点所在的区间:
①若f(c)=0(此时x0=c),则c就是函数的零点;
②若f(a)·f(c)<0(此时x0∈(a,c)),则令b=c;
③若f(c)·f(b)<0(此时x0∈(c,b)),则令a=c.
(4)判断是否达到精确度ε:若|a-b|<ε,则得到零点近似值a(或b);否则重复(2)~(4).
[微体验]
1.思考辨析
(1)二分法所求出的方程的解都是近似解.( )
(2)函数f(x)=|x|可以用二分法求零点.( )
(3)用二分法求函数零点的近似值时,每次等分区间后,零点必定在右侧区间内.( )
答案 (1)× (2)× (3)×
2.用二分法求函数f(x)在(a,b)内的唯一零点时,精确度为0.001,则结束计算的条件是( )
A.|a-b|