年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    数学九年级上册教案-2.4 圆周角6-苏科版

    立即下载
    加入资料篮
    数学九年级上册教案-2.4 圆周角6-苏科版第1页
    数学九年级上册教案-2.4 圆周角6-苏科版第2页
    数学九年级上册教案-2.4 圆周角6-苏科版第3页
    还剩3页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学苏科版九年级上册2.4 圆周角教学设计及反思

    展开

    这是一份初中数学苏科版九年级上册2.4 圆周角教学设计及反思,共6页。教案主要包含了创设情境,引入新课,师生互动,巩固提高,盘点总结,学以致用等内容,欢迎下载使用。
    圆周角第一课时教学设计教材的地位和作用:本节课是在圆的基本概念和性质以及圆心角概念和性质的基础上,对圆周角的性质进行探索,圆周角性质在圆的有关说理、作图、计算中有着广泛的应用,也是学习圆的后续知识的重要预备知识,在教材中起着承上启下的作用.同时,圆周角性质也是说明线段相等,角相等的重要依据之一. 学情分析:九年级学生有较强的自我发展的意识,较感兴趣于有“挑战性”的任务,也具备一定的逻辑推理能力。所以在教学中应建立数学与生活的联系,创设一系列有启发性、挑战性的问题情景激发学生学习的兴趣,引导学生用数学的眼光思考问题、发现规律、验证猜想。 教法:问题式教学法,启发式教学法,探究式教学法,情境式教学法,互动式教学法等多种教学方法融为一体。     学法:学生采用动手实践,自主探究,合作交流的学习方法进行学习。在观察、实践、问题转化等数学活动中充分体验探索的快乐,发现新知,发展能力。     教学目标1.知识与技能: (1)通过本节的教学使学生理解圆周角的概念,掌握圆周角的性质; (2)准确地运用圆周角性质进行简单的证明计算。     2.过程与方法:引导学生能主动地通过:实验、观察、猜想、验证“圆周角与圆心角的关系”,培养学生的合情推理能力、实践能力与创新精神,从而提高数学素养。     3.情感、态度与价值观:创设生活情景激发学生对数学的“好奇心、求知欲”;营造“民主、和谐”的课堂氛围,让学生在愉快的学习中不断获得成功的体验,同时培养学生以严谨求实的态度思考数学。    重点难点: 1. 重点:经历探索“圆周角与圆心角的关系”的过程,掌握圆周角定理。2. 难点:了解圆周角的分类、用化归思想,合情推理验证“圆周角与圆心角的关系”。教学准备:圆规、三角板、随堂讲义教学过程: 一、创设情境,引入新课    1)用几何画板画一圆心角∠AOB,移动顶点O到圆周,形成另一个角,这个角的顶点与两边有什么关系?类比圆心角的定义给这个角命名。教师结合示意图和圆心角的定义,引导学生得出圆周角的定义。由学生口述,教师板书:圆周角:顶点在圆上,且两边都与圆相交的角。强调:定义中的两个条件缺一不可。利用几何画板演示,让学生辨析圆周角。设计说明:由圆心角的图形引入圆周角定义,用运动变化的观点来认识两者的关系,直观、生动、印象深刻。并且由学生认知的最近发展区引入,水到渠成。2)问题:足球训练场上教练球门前划了一个圆圈进行无人防守的射门训练如图1,甲、乙两名运动员分别在CD两地,他们争论不休,都说在自己的位置射门好。如果你是教练,评一评他们的说法。                                                            图1 设计说明:联系学生生活中的话题,创设有一定挑战性的问题情景,目的在于激发学生的探索激情和求知欲望,吸引学生的注意力,很快进入课堂学习状态。这一设计没有采用课本上的问题情境,因为课本上的情境阅读文本复杂,理解起来有一定难度。二、师生互动、合作探究探究一:同弧所对的圆周角的大小有什么关系?1)教师引导学生把实际问题抽象成数学问题:“研究同弧所对的圆周角的大小关系问题”,导入新课。2引导学生通过画图测量,发现:∠C、∠D的度数相等。并进一步用几何画板测量多画几个弧AB所对的圆周角,并测量出各个角的度数,进一步验证“同弧所对的圆周角的大小相等”。(3)教师引导,问题转化为研究“同弧所对的圆周角与圆心角的关系”。探究二:同弧所对的圆周角与圆心角的大小有什么关系?(1)通过几何画板进行演示,引导学生注意弧所对的圆周角的三种情况,并用测量圆心角与圆周角度数的方法来初步猜测同弧所对的圆周角是圆心角度数的一半这一命题。学生动手实践:在圆形硬纸片上任取一段弧,画出该弧所对的圆心角和任意一个圆周角。并根据所画的图形,探索说明“该弧所对的圆周角等于圆心角的一半”成立的理由。分组讨论设计说明:本活动的设计让学生有自主探索、合作交流的时间和空间。学生在动手实践和充分的独立思考的基础上如有遇到个人难以独立解决的问题可以小组合作解决,在这个过程中教师深入课堂对学生适时的点拨、指导。 (2)充分的活动交流后,教师挑选有代表性的几个小组派代表在黑板上展示图片、并说理、验证。第一类:圆心在圆周角一边上  第二类:圆心在圆周角内部   第三类:圆心在圆周角外部 ①第一类比较容易,圆心在圆周角上    [∠C=AOBA=C OA=OC ②第二类、第三类比较难,教师引导:由圆的轴对称性和圆周角的分类标准联想到把硬纸片对折、发现过圆周角的顶点C作辅助线“直径”,可以把第二、第三类情况转化为第一类来验证。 第二类:圆心在圆周角内部 [∠C=AOBACD+BCD=(AOD+BOD )ACD=AOD、∠BCD=BOD ③第三类:圆心在圆周角外部 [∠C=AOBACD-BCD=(AOD-∠BOD )ACD=AOD、∠BCD=BOD(3)教师精讲:猜想成立,就可以把情景中研究“同弧所对的圆周角的大小问题”化归为研究“同弧所对的圆周角与圆心角的关系问题”,教师用几何画板演示二、三类情况,加深对所加辅助线和第二、三类情况划归为第一类情况的认识,一目了然。学生归纳严格的推理过程。设计说明:本环节以学生活动为核心,首先让学生自主探究、合作交流,突出了重点,然后教师通过引导,环环相扣,把难点突破,其间渗透了分类 化归等数学思想,把第一类图形想象第二类、第三类图形分别划归成第一类图形去解决,化抽象为具体、化一般为特殊,学生豁然开朗。(4)由学生归纳发现的规律,教师板书“同弧所对的圆周角度数并且它的度数恰好等于这条弧所对的圆心角度数的一半。”说明:“同弧”说明是同一个圆 “等弧”说明是在同圆或等圆中(5)引导: 同弧能否改成同弦呢?同弦所对的圆周角一定相等吗?(学生通过交流获得知识) 设计说明:让学生在同一知识中变换角度思考问题,从不同的方位观察圆心角与圆周角,更深一步理解同弧二字的含义,培养了学生思维的深度和广度。 三、巩固提高A层(基础题)1.概念辨析判断下列各图形中的是不是圆周角,并说明理由.  B层(中等题)课本86页练习题C层(提高题)(1)如图1,求∠1+∠2+∠3+∠4+∠5=          .(2)如图2:已知弦ABCD相交于P点,且∠AOC=44,∠BOD=46 求∠APC的度数 设计说明:分层次练习,是为了满足不同层次学生的学习数学需要,使不同的学生在数学上的得到不同的发展。 四、盘点总结知识:本节课主要学习了圆周角定理及其推论.能力:在解决圆的有关问题时,常常需要添加辅助线,构成直径所对的圆周角思想方法。在证明中,运用了数学中的分类方法和化归思想.分类时应做到不重不漏;化归思想是将复杂的问题转化成一系列的简单问题或已证问题。情感、态度、价值观:学习过程中,培养学生勇于独立探索、不怕困难,遇到问题,学会与他人沟通、合作。五、学以致用 尊重学生的个体存在差异的客观事实,为了尽可能地让所有的学生都能主动的参与,都能在获得必要发展的前提下,不同的学生获得不同的发展。练习、作业的设计分层要求。A层(基础题)1)如图3所示ABC三点在⊙O上,∠BOC=100,则∠BAC=        度,∠BDC=         . 2)如图4,在⊙O中,AB是⊙O的直径,∠D=25,则∠AOC=        如图5,已知AB=AC=2cm, BDC=60,则△ABC的周长是         。⑷如图6:∠A是⊙O的圆周角,∠A=40°,求∠OBC的度数. B层(中等题) 1)在⊙O中,BOC=100o,则弦BC所对的圆周角是         . 2)如图7AD是⊙O直径,BC=CD,∠A=30°,求B的度数.                                                       C层(课外延拓) 如图8:“世界杯”赛场上李铁、邵佳一、郝海东三名队员互相配合向对方球门进攻,当李带球冲到如图C点时,邵、郝也分别跟随冲到图中的D点、E点,从射门的角度大小考虑,李应把球传给谁好?请你从数学角度帮忙合情说理、分析说明。                              设计说明:本题的设计既与课堂引入的情景问题相呼应又为后继学习“点与圆的位置关系“埋下伏笔。问题的延拓渗透了分类思想、化归思想有助于培养学生的数学思想、应用意识,提高分析问题、解决问题的能力,让学生感悟数学来源于生活,应用于生活,激发学生学习数学的热情。 总体设计说明: 《数学新课标》指出“学生是学习的主人,教师是学习的组织者、引导者、和合作者。”本课以学生的活动为主线,以突出重点、突破难点、发展学生数学素养为目的,采用以“探究式教学法”为主,讲授法、发现法、分组交流合作法、启发式教学法、几何画板辅助教学等多种方法相结合。注重数学与生活的联系,创设一系列有启发性、挑战性的问题情景激发学生学习的兴趣,引导学生用数学的眼光思考问题、发现规律、验证猜想。注重学生的个性差异,因材施教,分层教学。注重师生互动、生生互动,让不同层次的学生动眼、动脑、动手、动口,参与数学思维活动,充分发挥学生的主体作用。善于运用多元的评价对学生适时、有度的“激励”,帮助学生认识自我、建立自信,以“我要学”的主人翁姿态投入学习,不仅“学会”,而且“会学”、“乐学”。这节课教师利用几何画板,对重点、难点进行突破,起到“山重返水复疑无路,柳暗花明又一村”的作用。在整个过程中,教师始终由台前退到幕后,本着:学生一看就会的知识不讲,学生经过努力能会知识的不讲,学生经过努力也学不会的知识进行精讲点拨,使知识的形成过程水到渠成,把课堂真正交给学生 

    相关教案

    初中数学苏科版九年级上册第2章 对称图形——圆2.4 圆周角教学设计:

    这是一份初中数学苏科版九年级上册第2章 对称图形——圆2.4 圆周角教学设计,共8页。教案主要包含了教材简解,目标预设,重点难点,设计理念,设计思路等内容,欢迎下载使用。

    初中数学苏科版九年级上册2.4 圆周角教案:

    这是一份初中数学苏科版九年级上册2.4 圆周角教案,共3页。教案主要包含了学习目标,学习重点,问题导学,问题探究,问题评价等内容,欢迎下载使用。

    数学九年级上册第2章 对称图形——圆2.4 圆周角教案及反思:

    这是一份数学九年级上册第2章 对称图形——圆2.4 圆周角教案及反思,共3页。教案主要包含了教学目标,教学重点,教学难点,教学过程等内容,欢迎下载使用。

    文档详情页底部广告位
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map