初中数学人教版九年级上册22.3 实际问题与二次函数教案
展开知识与技能:
1.经理探索物体运动中的最大高度等问题的过程,体会二次函数是一类最优化的数学模型,并感受数学的应用价值。
2.能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的顶点坐标求出实际问题的最大值(或最小值),发展解决问题的能力。
过程与方法:
经理物体运动中的最大高度等问题的探究过程,让学生认识数学与人类生活的密切联系及对人类历史发展的作用,发展学生运用数学知识解决实际问题的能力。
情感态度与价值观:
体会数学与人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心。
教学重点:
1、探究运动中的最大高度等问题引出解决面积问题的最大值问题。
2、能够分析和表示实际问题中变量之间的二次函数学关系,并运用二次函数的知识求出实际问题中的最大(小)值,发展解决问题的能力。
教学难点
运用二次函数解决实际问题
教学方法:
讲解、归纳、讨论、分析、练习
教学过程:
回答下列问题。
1. 二次函数y=2(x-3)2+5的对称轴是 ,顶点坐标是 .当x= 时,y的最 值是 .
2. 二次函数y=-3(x+4)2-1的对称轴是 ,顶点坐标是 .当x= 时,函数有最___ 值,是 .
3.二次函数y=2x2-8x+9的对称轴是 ,顶点坐标是 .当x= 时,函数有最_______ 值,是 .
由此可以看出由二次函数的解析式可以求出相应函数的最大(小)值,这节课我们就来学习用二次函数解决实际问题。
二、新授
问题1:从地面竖直向上抛出一小球,小球的高度 h(单位: m)与小球的运动时间 t(单位:s)之间的关系式是h= 30t - 5t 2 (0≤t≤6).小球的运动时间是多少时,小球最高?小球运动中的最大高度是多少?
分析:我们可以借助函数图像解决这个问题。画出函数的图像。
可以看出,这个函数的图像抛物线的一部分。这条抛物线的顶点是这个函数的图像的最高点,也就是说,当t取顶点的横坐标时,这个函数有最大值
因此,当 时,h有
最大值 也就是说,
小球运动的时间是 3 s 时,小球最高.
小球运动中的最大高度是 45 m.
提问归纳:
如何求出二次函数 y = ax 2 + bx + c 的最小(大)值?
由于抛物线 y = ax 2 + bx + c 的顶点是最低(高)点,
当 时,二次函数 y = ax 2 + bx + c 有最小(大) 值
类比引入,探究问题
探究1:
用总长为 60 m 的篱笆围成矩形场地,矩形面积 S 随矩形一边长 l 的变化而变化.当 l 是多少米时,场地的面积 S 最大?
解: ,
整理后得 (0<l<30).
∴ 当 时,S 有最大值为 .
当 l 是 15 m 时,场地的面积 S 最大,S最大值为225m2.
总结方法:
1.由于抛物线 y = ax 2 + bx + c 的顶点是最低(高)点,当
时,二次函数 y = ax 2 + bx + c 有最小(大) 值
2.列出二次函数的解析式,并根据自变量的实际意义,确定自变量的取值范围.
3.在自变量的取值范围内,求出二次函数的最大值或最小值.
变式探究:
A
B
C
D
如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有二道篱笆的长方形花圃,设花圃的宽AB为x米,面积为S平方米。
(1)求S与x的函数关系式及自变量的取值范围;
(2)当x取何值时所围成的花圃面积最大,最大值是多少?
(3)若墙的最大可用长度为8米,则求围成花圃的最大面积。
运用新知,拓展训练 :
1.将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是 cm2.
2:为了改善小区环境,某小区决定要在一块一边靠墙
(墙长 25 m)的空地上修建一个矩形绿化带 ABCD,绿
化带一边靠墙, 另三边用总长为 40 m 的栅栏围住 (如
下图).设绿化带的 BC 边长为 x m,绿化带的面积为 y m 2.
(1)求 y 与 x 之间的函数关系式,并写出自变量 x 的取值范围.
(2)当 x 为何值时,满足条件的绿化带的面积最大?
四、课堂小结
(1) 如何求二次函数的最小(大)值,并利用其解决实际问题?
(2) 在解决问题的过程中应注意哪些问题?你学到了哪些思考问题的方法?
五.布置作业
教科书习题 22.3 第 1,4,5 题.
数学九年级上册22.3 实际问题与二次函数教案: 这是一份数学九年级上册22.3 实际问题与二次函数教案,共6页。
人教版九年级上册22.3 实际问题与二次函数教案: 这是一份人教版九年级上册22.3 实际问题与二次函数教案,共19页。
初中数学人教版九年级上册22.3 实际问题与二次函数教学设计: 这是一份初中数学人教版九年级上册22.3 实际问题与二次函数教学设计,共19页。教案主要包含了知识梳理,诊断自测,考点突破,易错精选,精华提炼,本节训练等内容,欢迎下载使用。