初中数学华师大版八年级下册2. 矩形的判定教案
展开1.理解并掌握矩形的判定方法.
2.使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力.
教法设计:观察、启发、总结、提高,类比探讨,讨论分析,启发式.
教学重点:矩形的判定.
教学难点:矩形的判定及性质的综合应用.
教学步骤:
一.复习提问:
1.什么叫做平行四边形?什么叫做矩形?
2.矩形有哪些性质?
3.矩形与平行四边形有什么共同之处?有什么不同之处?
二.引入新课
设问:
1.矩形的判定.
2.矩形是有一个角是直角的平行四边形,在判定一个四边形是不是矩形,首先看这个四边形是不是平行四边形,再看它两边的夹角是不是直角,这种用“定义”判定是最重要和最基本的判定方法(这体现了定义作用的双重性、性质和判定).除此之外,还有其它几种判定矩形的方法,下面就来研究这些方法.
方法1:有三个角是直角的四边形是矩形.(并让学生写出推理过程.)
方法2:对角钱相等的平行四边形是矩形.(分析判定方法2和学生一道写出证明过程.)
归纳矩形判定方法(由学生小结):
(1)一个角是直角的平行四边形.(2)对角线相等的平行四边形.
(3)有三个角是直角的四边形.
3.矩形判定方法的实际应用
除教材中所举的门框或矩形零件外,还可以结合生产生活实际说明判定矩形的实用价值.
4.矩形知识的综合应用.(让学生思考,然后师生共同完成)
例4:已知:O是矩形ABCD对角线的交点,E、F、G、H分别是OA、OB、OC、OD上的点,AE=BF=CG=DH,
求证:四边形EFGH为矩形
分析:利用对角线互相平分且相等的四边形是矩形可以证明
证明:∵ABCD为矩形
∴AC=BD
∴AC、BD互相平分于O
∴AO=BO=CO=DO
∵AE=BF=CG=DH
∴EO=FO=GO=HO
又HF=EG
∴EFGH为矩形
三.小结:
(1)矩形的判定方法l、2都是有两个条件:①是平行四边形,②有一个角是直角或对角线相等.
判定方法3的两个条件是:①是四边形,②有三个直角.
矩形的判定方法有哪些?
一个角是直角的平行四边形
对角线相等的平行四边形 -—是矩形.
有三个角是直角的四边形
(2)要注意不要不加考虑地把性质定理的逆命题作为矩形的判定定理.
补充例题
例:判断
(1)两条对角线相等四边形是矩形( )
(2)两条对角线相等且互相平分的四边形是矩形( )
(3)有一个角是直角的四边形是矩形( )
(4)在矩形内部没有和四个顶点距离相等的点( )
分析及解答:
(1)如图(1)四边形ABCD中,AC=BD,但ABCD不为矩形,∴×
(2)对角线互相平分的四边形即平行四边形,∴对角线相等的平行四边形为矩形∴√
(3)如图(2),四边形ABCD中,∠B=90°,但ABCD不为矩形 ∴×
(4)矩形对角线的交点O到四个顶点距离相等 ∴×, 如图(3),
数学人教版18.2.1 矩形教案: 这是一份数学人教版18.2.1 矩形教案,共3页。教案主要包含了教材分析,例题的意图分析,课堂引入,例习题分析,课堂随练,课堂小结,作业布置,教学反思等内容,欢迎下载使用。
初中数学沪科版八年级下册19.3 矩形 菱形 正方形教学设计: 这是一份初中数学沪科版八年级下册19.3 矩形 菱形 正方形教学设计,共4页。教案主要包含了知识回顾,创设情景,探究新知,巩固练习,课堂小结,作业 教材习题的第1等内容,欢迎下载使用。
初中人教版18.2.2 菱形教学设计: 这是一份初中人教版18.2.2 菱形教学设计,共4页。教案主要包含了例题的意图分析,课堂引入,例习题分析,随堂练习,课后练习等内容,欢迎下载使用。