
所属成套资源:2022届高三统考数学(文科)人教版一轮复习学案(共97份)
2022届高三统考数学(文科)人教版一轮复习学案:微专题(三) 抽象函数单调性的判断方法
展开
这是一份2022届高三统考数学(文科)人教版一轮复习学案:微专题(三) 抽象函数单调性的判断方法,共1页。
[例] [2021·西安模拟]已知定义在R上的函数f(x)满足:①f(x+y)=f(x)+f(y)+1,②当x>0时,f(x)>-1.
(1)求f(0)的值,并证明f(x)在R上是单调增函数;
(2)若f(1)=1,解关于x的不等式f(x2+2x)+f(1-x)>4.
解题视点:(1)对于抽象函数的单调性的证明,只能用定义.应该构造出f(x2)-f(x1)并与0比较大小.(2)将函数不等式中的抽象函数符号“f”运用单调性“去掉”是本小题的切入点.要构造出f(M)x2,
则x1-x2>0,f(x1-x2)>-1.
又f(x1)=f((x1-x2)+x2)=f(x1-x2)+f(x2)+1>f(x2),所以,函数f(x)在R上是单调增函数.
(2)由f(1)=1,得f(2)=3,f(3)=5.
由f(x2+2x)+f(1-x)>4得f(x2+x+1)>f(3),
又函数f(x)在R上是增函数,故x2+x+1>3,
解之,得x1,
故原不等式的解集为{x|x1}.
答题模板:解函数不等式问题的一般步骤
第一步:确定函数f(x)在给定区间上的单调性;
第二步:将函数不等式转化为f(M)
相关学案
这是一份2022届高三统考数学(文科)人教版一轮复习学案:2.2 函数的单调性与最值,共8页。学案主要包含了知识重温,小题热身等内容,欢迎下载使用。
这是一份2022届高三统考数学(文科)人教版一轮复习学案:微专题(四) 利用函数性质及方程思想求函数中的参数值,共2页。
这是一份2022届高三统考数学(文科)人教版一轮复习学案:微专题(十一) 含exlnx与x的组合函数的解题策略,共5页。
