人教版第十一章 三角形综合与测试同步测试题
展开
这是一份人教版第十一章 三角形综合与测试同步测试题,共12页。试卷主要包含了探究与发现,阅读材料并填空等内容,欢迎下载使用。
第11章 三角形 章末提高专项练习题(三) 1.如图,在四边形ABCD中,BE和DF分别平分四边形的外角∠MBC和∠NDC,BE与DF相交于点G,若∠BAD=α,∠BCD=β.(1)如图1,若α+β=168°,求∠MBC+∠NDC的度数.(2)如图1,若∠BGD=35°,试猜想α、β所满足的数量关系式,并说明理由.(3)如图2,若α=β,判断BE、DF的位置关系,并说明理由. 2.如图,BE、DF分别是四边形ABCD的外角∠MBC和∠NDC的角平分线,若∠BAD=x,∠BCD=y.(1)①如图1,若x+y=120°,求∠MBC+∠NDC的度数;②如图1,若BE与DF相交于点G,∠BGD=30°,请写出x、y的关系式,并说明理由.(2)如图2,若x=y,请判断BE、DF的位置关系,并说明理由. 3.如图1,四边形MNBD为一张长方形纸片.(1)如图2,将长方形纸片剪两刀,剪出三个角(∠BAE、∠AEC、∠ECD),则∠BAE+∠AEC+∠ECD= °.(2)如图3,将长方形纸片剪三刀.剪出四个角(∠BAE、∠AEF、∠EFC、∠FCD),则∠BAE+∠AEF+∠EFC+∠FCD= °.(3)如图4,将长方形纸片剪四刀,剪出五个角(∠BAE、∠AEF、∠EFG、∠FGC、∠GCD),则∠BAE+∠AEF+∠EFG+∠FGC+∠GCD= °.(4)根据前面探索出的规律,将本题按照上述剪法剪n刀,剪出(n+1)个角,那么这(n+1)个角的和是 °. 4.探究与发现:【探究一】我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?已知:如图①,∠FDC与∠ECD分别为△ADC的两个外角,试探究∠A与∠FDC+∠ECD的数量关系,并证明你探究的数量关系.【探究二】三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?已知:如图②,在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠A与∠P的数量关系,并证明你探究的数量关系.【探究三】若将△ADC改成任意四边形ABCD呢?已知:如图③,在四边形ABCD中,DP、CP分别平分∠BDC和∠ACD,试利用上述结论直接写出∠A+∠B与∠P的数量关系 . 5.已知,在四边形ABCD中,∠A+∠C=160°,BE,DF分别为四边形ABCD的外角∠CBN,∠MDC的平分线.(1)如图1,若BE∥DF,求∠C的度数;(2)如图2,若BE,DF交于点G,且BE∥AD,DF∥AB,求∠C的度数. 6.(1)阅读材料并填空:运用平行线及其性质,可以推理证明出很多有用的结论,如图甲,点D是△ABC中BC边延长线上的一点,过点C作CE∥AB,则有如下推理证明:∵CE∥AB(已知),∴∠ACE= (两直线平行, ).∠ECD= (两直线平行, ).∵∠ACD=∠ACE+∠ECD,∴∠ACD= (等量代换).(2)如图乙,根据(1)中的平行线的构造方法,过点D作DE∥AB交BC于点E,运用(1)中的结论,即可推理出四边形ABCD中∠A+∠B+∠C+∠CDA的度数.具体推理步骤如下,请填空:由(1)知:∠BED=∠C+ .∵DE∥AB,∴ +∠ADE=180°(两直线平行, ),∠B+∠BED=180°(两直线平行,同旁内角互补).∵∠CDA=∠CDE+∠ADE,∴∠A+∠B+∠C+∠CDA=∠A+∠B+∠C+∠CDE+∠ADE=∠A+∠B+∠BED+∠ADE= °(等量代换). 7.如图①,∠1、∠2是四边形ABCD的两个不相邻的外角.(1)猜想并说明∠1+∠2与∠A、∠C的数量关系;(2)如图②,在四边形ABCD中,∠ABC与∠ADC的平分线交于点O.若∠A=50°,∠C=150°,求∠BOD的度数;(3)如图③,BO、DO分别是四边形ABCD外角∠CBE、∠CDF的角平分线.请直接写出∠A、∠C与∠O的数量关系 . 8.如图,在四边形ABCD中,AB∥CD,对角线AC与BD相交于点E,且∠DAC=∠DCA.(1)求证:AC平分∠BAD;(2)若∠AEB=125°,且∠ABD=2∠CBD,DF平分∠ADB交AB边于点F,求∠BDF﹣∠CBD的值. 9.如果一个多边形的各边都相等,且各内角也都相等,那么这个多边形就叫做正多边形,如图,就是一组正多边形,观察每个正多边形中∠α的变化情况,解答下列问题.(1)将下面的表格补充完整:正多边形的边数3456……18∠α的度数 …… (2)根据规律,是否存在一个正n边形,使其中的∠α=20°?若存在,直接写出n的值;若不存在,请说明理由.(3)根据规律,是否存在一个正n边形,使其中的∠α=21°?若存在,直接写出n的值;若不存在,请说明理由. 10.如图1我们称之为“8字形”,请直接写出∠A,∠B,∠C,∠D之间的数量关系: ;(2)如图2,∠1+∠2+∠3+∠4+∠5+∠6+∠7= 度(3)如图3所示,已知∠1=∠2,∠3=∠4,猜想∠B,∠P,∠D之间的数量关系,并证明. 11.阅读下列材料,然后解答后面的问题.(1)定义:把四边形的某些边向两方延长,其他各边有不在延长所得直线的同一旁,这样的四边形叫做凹四边形.如图1,四边形ABCD为凹四边形.(2)性质探究:请完成凹四边形一个性质的证明.已知:如图2,四边形ABCD是凹四边形.求证:∠BCD=∠B+∠A+∠D.(3)性质应用:如图3,在凹四边形ABCD中,∠BAD的角平分线与∠BCD的角平分线交于点E,若∠ADC=140°,∠AEC=102°,则∠B= °. 12.已知在四边形ABCD中,∠A=x,∠C=y,(0°<x<180°,0°<y<180°).(1)∠ABC+∠ADC= (用含x、y的代数式直接填空);(2)如图1,若x=y=90°.DE平分∠ADC,BF平分∠CBM,请写出DE与BF的位置关系,并说明理由;(3)如图2,∠DFB为四边形ABCD的∠ABC、∠ADC相邻的外角平分线所在直线构成的锐角.①若x+y=120°,∠DFB=20°,试求x、y.②小明在作图时,发现∠DFB不一定存在,请直接指出x、y满足什么条件时,∠DFB不存在. 13.如图①,△ABC中,BD平分∠ABC,且与△ABC的外角∠ACE的角平分线交于点D.(1)若∠ABC=75°,∠ACB=45°,求∠D的度数;(2)若把∠A截去,得到四边形MNCB,如图②,猜想∠D、∠M、∠N的关系,并说明理由. 14.(1)如图1,直线DE经过点A,且DE∥BC,求证:∠BAC+∠ABC+∠ACB=180°;(2)如图2,在已知四边形ABCD,求∠BAD+∠ABC+∠BCD+∠CDA的度数;(3)如图3,AB⊥BC,点P为∠ABC内一点,点D为BC边上一点,连接PA、PD,且AQ、DQ分别平分∠PAB、∠PDC,判断∠P,∠Q的数量关系,并说明理由. 15.四边形ABCD中,∠A=140°,∠D=80°.(1)如图①所示,若∠ABC的平分线BE交DC于点E,且BE∥AD,试求出∠C的度数;(2)如图②所示,若∠ABC和∠BCD的平分线交于点E,试求出∠BEC的度数. 16.(1)如图1,在△ADC中,∠ADC的平分线和∠ACD的外角平分线交于点P,若∠ADC=70°,∠ACD=50°,求∠P的度数.(2)如图2,在四边形ABCD中,∠ADC的平分线和∠BCD的外角平分线交于点P,∠A=90°,∠B=150°,求∠P的度数.(3)如图3,若将(2)中“∠A=90°,∠B=150°”改为“∠A=α,∠B=β”,其余条件不变,直接写出∠P与α+β之间的数量关系. 17.三角形的一条边与另一条边的反向延长线组成的角,叫做三角形的外角.如图1,点D为BC延长线上一点,则∠ACD为△ABC的一个外角.求证:∠ACD=∠A+∠B证明:过点C作CE∥AB(过直线外一点 )∴∠B= ∠A= ∵∠ACD=∠1+∠2∴∠ACD=∠ +∠B(等量代换)应用:如图2是一个五角星,请利用上述结论求∠A+∠B+∠C+∠D+∠E的值为 18.阅读材料:如图1,点A是直线MN上一点,MN上方的四边形ABCD中,∠ABC=140°,延长BC,2∠DCE=∠MAD+∠ADC,探究∠DCE与∠MAB的数量关系,并证明.小白的想法是:“作∠ECF=∠ECD(如图2),通过推理可以得到CF∥MN,从而得出结论”请按照小白的想法完成解答:拓展延伸保留原题条件不变,CG平分∠ECD,反向延长CG,交∠MAB的平分线于点H(如图3),设∠MAB=α,请直接写出∠H的度数(用含α的式子表示).19.(1)思考探究:如图①,△ABC的内角∠ABC的平分线与外角∠ACD的平分线相交于P点,请探究∠P与∠A的关系是 .(2)类比探究:如图②,四边形ABCD中,设∠A=α,∠D=β,α+β>180°,四边形ABCD的内角∠ABC与外角∠DCE的平分线相交于点P.求∠P的度数.(用α,β的代数式表示)(3)拓展迁移:如图③,将(2)中α+β>180°改为α+β<180°,其它条件不变,请在图③中画出∠P,并直接写出∠P= .(用α,β的代数式表示)20.(1)我们知道“三角形三个内角的和为180°”.现在我们用平行线的性质来证明这个结论是正确的.已知:∠BAC、∠B、∠C是△ABC的三个内角,如图1求证:∠BAC+∠B+∠C=180°证明:过点A作直线DE∥BC(请你把证明过程补充完整)(2)请你用(1)中的结论解答下面问题:如图2,已知四边形ABCD,求∠A+∠B+∠C+∠D的度数.
相关试卷
这是一份初中数学浙教版八年级上册1.1 认识三角形优秀当堂检测题,文件包含第1章认识三角形浙教版八年级上册单元测试原卷版docx、第1章认识三角形浙教版八年级上册单元测试答案版docx等2份试卷配套教学资源,其中试卷共12页, 欢迎下载使用。
这是一份初中数学人教版八年级上册第十一章 三角形综合与测试课后练习题,共6页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。
这是一份初中数学人教版八年级上册第十二章 全等三角形综合与测试课时作业,共21页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。