|教案下载
终身会员
搜索
    上传资料 赚现金
    高中数学人教B版必修13.1.1实数指数幂及其运算教案(1)
    立即下载
    加入资料篮
    高中数学人教B版必修13.1.1实数指数幂及其运算教案(1)01
    高中数学人教B版必修13.1.1实数指数幂及其运算教案(1)02
    高中数学人教B版必修13.1.1实数指数幂及其运算教案(1)03
    还剩5页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中数学人教版新课标B必修13.1.1实数指数幂及其运算教案

    展开
    这是一份高中数学人教版新课标B必修13.1.1实数指数幂及其运算教案,共8页。教案主要包含了教学目标,教学重点,学情分析,教学内容分析等内容,欢迎下载使用。

    知识与技能:理解指数函数的概念,掌握指数函数的图象和性质,培养学生实际应用函数的能力。
    过程与方法:通过观察图象,分析、归纳、总结、自主建构指数函数的性质。领会数形结合的数学思想方法,培养学生发现、分析、解决问题的能力。
    情感态度与价值观:在指数函数的学习过程中,体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。
    二、教学重点、难点:
    教学重点:指数函数的概念、图象和性质。指数函数是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一。作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础;同时在生活及生产实际中有着广泛的应用,所以指数函数应重点研究。
    教学难点:对底数的分类,如何由图象、解析式归纳指数函数的性质。指数函数是学生完全陌生的一类函数, 对于这样的函数应怎样进行较为系统的理论研究是学生面临的难题。三、学情分析:
    学生已经学习了函数的知识,,指数函数是函数知识中重要的一部分内容,学生若能将其与学过的正比例函数、一次函数、二次函数进行对比着去理解指数函数的概念、性质、图象,则一定能从中发现指数函数的本质,所以对已经熟悉掌握函数的学生来说,学习本课并不是太难。
    学生通过对高中数学中函数的学习,对解决一些数学问题有一定的能力。通过教师启发式引导,学生自主探究完成本节课的学习。
    高一学生的认知水平从形象向抽象、从特殊向一般过渡,思维能力的提高是一个转折期,但是,学生的自主意识强,有主动学习的愿望与能力。有好奇心、好胜心、进取心,富有激情、思维活跃。
    四、教学内容分析
    本节课是《普通高中课程标准实验教科书·数学(1)》(人教B版)第二章第一节第二课(3.1.2)《指数函数及其性质》。根据我所任教的学生的实际情况,我将《指数函数及其性质》划分为两节课(探究图象及其性质,指数函数及其性质的应用),这是第一节课“探究图象及其性质”。 指数函数是重要的基本初等函数之一,作为常见函数,它不仅是今后学习对数函数和幂函数的基础,同时在生活及生产实际中有着广泛的应用,所以指数函数应重点研究。
    函数及其图象在高中数学中占有很重要的位置。如何突破这个即重要又抽象的内容,其实质就是将抽象的符号语言与直观的图象语言有机的结合起来,通过具有一定思考价值的问题,激发学生的求知欲望――持久的好奇心。我们知道,函数的表示法有三种:列表法、图象法、解析法,以往的函数的学习大多只关注到图象的作用,这其实只是借助了图象的直观性,只是从一个角度看函数,是片面的。本节课,力图让学生从不同的角度去研究函数,对函数进行一个全方位的研究,并通过对比总结得到研究的方法,让学生去体会这种的研究方法,以便能将其迁移到其他函数的研究中去。
    教学过程:
    (一)创设情景
    问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……一个这样的细胞分裂 x次后,得到的细胞分裂的个数 y与 x之间,构成一个函数关系,能写出 x与 y之间的函数关系式吗?
    学生回答: y与 x之间的关系式,可以表示为y=2x 。
    问题2: 一种放射性物质不断衰变为其他物质,每经过一年剩留的质量约是原来的84%.求出这种物质的剩留量随时间(单位:年)变化的函数关系.设最初的质量为1,时间变量用x表示,剩留量用y表示。
    学生回答: y与 x之间的关系式,可以表示为y=0.84x 。
    (二)导入新课
    引导学生观察,两个函数中,底数是常数,指数是自变量。
    设计意图:充实实例,突出底数a的取值范围,让学生体会到数学来源于生产生活实际。函数y=2x、y=0.84x 分别以01的数为底,加深对定义的感性认识,为顺利引出指数函数定义作铺垫。
    (三)新课讲授
    1.指数函数的定义
    一般地,函数叫做指数函数,其中x是自变量,函数的定义域是R。
    的含义:
    设计意图:为按两种情况得出指数函数性质作铺垫。若学生回答不合适,引导学生用区间表示:(0,1)∪(1,+∞)
    问题:指数函数定义中,为什么规定“”如果不这样规定会出现什么情况?设计意图:教师首先提出问题:为什么要规定底数大于0且不等于1呢?这是本节的一个难点,为突破难点,采取学生自由讨论的形式,达到互相启发,补充,活跃气氛,激发兴趣的目的。
    对于底数的分类,可将问题分解为:
    (1)若a<0会有什么问题?(如,则在实数范围内相应的函数值不存在)
    (2)若a=0会有什么问题?(对于 ,都无意义)
    (3)若 a=1又会怎么样?(1x无论x取何值,它总是1,对它没有研究的必要.)
    师:为了避免上述各种情况的发生,所以规定a>0且 .
    在这里要注意生生之间、师生之间的对话。
    设计意图:认识清楚底数a的特殊规定,才能深刻理解指数函数的定义域是R;并为学习对数函数,认识指数与对数函数关系打基础。
    教师还要提醒学生指数函数的定义是形式定义,必须在形式上一模一样才行,然后把问题引向深入。
    1:指出下列函数那些是指数函数:
    2:若函数是指数函数,则a=------
    3:已知y=f(x)是指数函数,且f(2)=4,求函数y=f(x)的解析式。
    设计意图 :加深学生对指数函数定义和呈现形式的理解。
    2.指数函数的图像及性质
    在同一平面直角坐标系内画出下列指数函数的图象
    画函数图象的步骤:列表、描点、连线
    思考如何列表取值?
    教师与学生共同作出 图像。
    设计意图:在理解指数函数定义的基础上掌握指数函数的图像与性质,是本节的重点。关键在于弄清底数a对于函数值变化的影响。对于时函数值变化的不同情况,学生往往容易混淆,这是教学中的一个难点。为此,必须利用图像,数形结合。教师亲自板演,学生亲自在课前准备好的坐标系里画图,而不是采用几何画板直接得到图像,目的是使学生更加信服,加深印象,并为以后画图解题,采用数形结合思想方法打下基础。
    利用几何画板演示函数的图象,观察分析图像的共同特征。由特殊到一般,得出指数函数的图象特征,进一步得出图象性质:
    教师组织学生结合图像讨论指数函数的性质。
    设计意图:这是本节课的重点和难点,要充分调动学生的积极性、主动性,发挥他们的潜能,尽量由学生自主得出性质,以便能够更深刻的记忆、更熟练的运用。
    师生共同总结指数函数的性质,教师边总结边板书。
    特别地,函数值的分布情况如下:
    设计意图:再次强调指数函数的单调性与底数a的关系,并具体分析了函数值的分布情况,深刻理解指数函数值域情况。
    巩固与练习
    例1: 比较下列各题中两值的大小
    教师引导学生观察这些指数值的特征,思考比较大小的方法。
    (1)(2)两题底相同,指数不同,(3)(4)两题可化为同底的,可以利用函数的单调性比较大小。
    (5)题底不同,指数相同,可以利用函数的图像比较大小。
    (6)题底不同,指数也不同,可以借助中介值比较大小。
    例2:已知下列不等式 , 比较m,n的大小 :

    设计意图:这是指数函数性质的简单应用,使学生在解题过程中加深对指数函数的图像及性质的理解和记忆。
    (五)课堂小结:通过本节课的学习,你学到了哪些知识?你又掌握了哪些数学思想方法?你能将指数函数的学习与实际生活联系起来吗?
    设计意图:让学生在小结中明确本节课的学习内容,强化本节课的学习重点,并为后续学习打下基础。
    (六)布置作业
    1、练习B组第2题;习题3-1A组第3题
    2、观察指数函数的图象,比较a,b,c,d,的大小。
    设计意图:课后思考的安排,激发学生的学习兴趣,主要为学有余力的学生准备的。并为下一节课讲授指数函数图像随底数a变化规律作铺垫。
    板书设计:
    相关教案

    高中数学人教B版 (2019)必修 第二册4.1.1 实数指数幂及其运算教案设计: 这是一份高中数学人教B版 (2019)必修 第二册4.1.1 实数指数幂及其运算教案设计,共5页。教案主要包含了复习提问,新课讲解,归纳小结等内容,欢迎下载使用。

    数学人教B版 (2019)4.1.1 实数指数幂及其运算教案设计: 这是一份数学人教B版 (2019)4.1.1 实数指数幂及其运算教案设计,共4页。

    高中数学人教版新课标B必修13.2.1对数及其运算教学设计: 这是一份高中数学人教版新课标B必修13.2.1对数及其运算教学设计,共5页。教案主要包含了同底对数的加,同底对数加等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map