人教版新课标B必修32.1.3分层抽样课文配套ppt课件
展开设计科学、合理的抽样方法,其核心问题是保证抽样公平,并且样本具有好的代表性.如果要调查我校高一学生的平均身高,由于男生一般比女生高,故用简单随机抽样或系统抽样,都可能使样本不具有好的代表性.对于此类抽样问题,我们需要一个更好的抽样方法来解决.
知识探究(一):分层抽样的基本思想
某地区有高中生2400人,初中生10800人,小学生11100人.当地教育部门为了了解本地区中小学生的近视率及其形成原因,要从本地区的中小学生中抽取1%的学生进行调查.
样本容量与总体个数的比例为1:100,则高中应抽取人数为2400*1/100=24人,初中应抽取人数为10800*1/100=108人,小学应抽取人数为11100*1/100=111人.
思考1:具体在三类学生中抽取样本时(如在10800名初中生中抽取108人),可以用哪种抽样方法进行抽样?
思考2:上述抽样方法不仅保证了抽样的公平性,而且抽取的样本具有较好的代表性,从而是一种科学、合理的抽样方法,这种抽样方法称为分层抽样.一般地,分层抽样的基本思想是什么?
若总体由差异明显的几部分组成,抽样时,先将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,再将各层取出的个体合在一起作为样本.
思考3:若用分层抽样从该地区抽取81名学生调查身体发育状况,那么高中生、初中生和小学生应分别抽取多少人?
高中生8人,初中生36人,小学生37人.
知识探究(一):分层抽样的操作步骤
某单位有职工500人,其中35岁以下的有125人,35岁~49岁的有280人,50岁以上的有95人.为了调查职工的身体状况,要从中抽取一个容量为100的样本.
思考1:该项调查应采用哪种抽样方法进行?
思考2:按比例,三个年龄层次的职工分别抽取多少人?
35岁以下25人,35岁~49岁56人,50岁以上19人.
思考3:在各年龄段具体如何抽样?怎样获得所需样本?
思考4:一般地,分层抽样的操作步骤如何?
第一步,计算样本容量与总体的个体数之比.
第四步,将各层抽取的个体合在一起,就得到所取样本.
第三步,用简单随机抽样或系统抽样在各层中抽取相应数量的个体.
第二步,将总体分成互不交叉的层,按比例确定各层要抽取的个体数.
思考5:在分层抽样中,如果总体的个体数为N,样本容量为n,第i层的个体数为k,则在第i层应抽取的个体数如何计算?
思考6:样本容量与总体的个体数之比是分层抽样的比例常数,按这个比例可以确定各层应抽取的个体数,如果各层应抽取的个体数不都是整数该如何处理?
调节样本容量,剔除个体.
思考7:简单随机抽样、系统抽样和分层抽样既有其共性,又有其个性,根据下表,你能对三种抽样方法作一个比较吗?
抽样过程中每个个体被抽取的概率相等
将总体分成均衡几部分,按规则关联抽取
将总体分成几层,按比例分层抽取
用简单随机抽样抽取起始号码
总体由差异明显的几部分组成
从总体中逐个不放回抽取
用简单随机抽样或系统抽样对各层抽样
例1 某公司共有1000名员工,下设若干部门,现用分层抽样法,从全体员工中抽取一个容量为80的样本,已知策划部被抽取4个员工,求策划部的员工人数是多少?
例2 某中学有180名教职员工,其中教学人员144人,管理人员12人,后勤服务人员24人,设计一个抽样方案,从中选取15人去参观旅游.
用分层抽样,抽取教学人员12人,管理人员1人,后勤服务人员2人.
例3 某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点,公司为了调查产品的销售情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务等情况,记这项调查为②,完成这两项调查宜分别采用什么方法?
①用分层抽样,②用简单随机抽样.
数学必修32.1.3分层抽样教学ppt课件: 这是一份数学必修32.1.3分层抽样教学ppt课件,共30页。PPT课件主要包含了课前自主预习,课堂合作探究,课后讨论探究,课时跟踪训练,分成互不交叉的层,一定的比例,各层独立,样本结构,总体结构,差异明显等内容,欢迎下载使用。
高中数学人教版新课标B必修33.1.4概率的加法公式教案配套课件ppt: 这是一份高中数学人教版新课标B必修33.1.4概率的加法公式教案配套课件ppt,共24页。PPT课件主要包含了要点归纳,专题一概率与频率,专题二古典概型,专题四几何概型,专题六数形结合思想等内容,欢迎下载使用。
高中数学人教版新课标B必修33.1.4概率的加法公式课文课件ppt: 这是一份高中数学人教版新课标B必修33.1.4概率的加法公式课文课件ppt,共16页。PPT课件主要包含了共有28个等可能事件,因此所求概率为等内容,欢迎下载使用。