所属成套资源:十年(2012-2021)高考数学真题分项汇编(浙江专用)(共10份)
专题02 函数与导数-十年(2012-2021)高考数学真题分项汇编(浙江专用)
展开
这是一份专题02 函数与导数-十年(2012-2021)高考数学真题分项汇编(浙江专用),文件包含专题02函数与导数填空题解答题原卷版docx、专题02函数与导数填空题解答题解析版docx等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。
十年(2012-2021)高考数学真题分项汇编(浙江专用)
专题02函数与导数/填空题解答题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.(2021·浙江高考真题)已知函数,则图象为如图的函数可能是( )
A. B.
C. D.
【答案】D
【分析】由函数的奇偶性可排除A、B,结合导数判断函数的单调性可判断C,即可得解.
【详解】
对于A,,该函数为非奇非偶函数,与函数图象不符,排除A;
对于B,,该函数为非奇非偶函数,与函数图象不符,排除B;
对于C,,则,
当时,,与图象不符,排除C.
故选:D.
2.(2020·浙江高考真题(理))已知x,y为正实数,则( )
A.2lgx+lgy=2lgx+2lgy B.2lg(x+y)=2lgx•2lgy
C.2lgx•lgy=2lgx+2lgy D.2lg(xy)=2lgx•2lgy
【答案】D
【详解】
因为as+t=as•at,lg(xy)=lgx+lgy(x,y为正实数),
所以2lg(xy)=2lgx+lgy=2lgx•2lgy,满足上述两个公式,
故选D.
3.(2020·浙江高考真题(文))已知是函数的一个零点,若,则( )
A., B.,
C., D.,
【答案】B
【分析】
转化是函数的一个零点为是函数与的交点的横坐标,画出函数图像,利用图像判断即可
【详解】
因为是函数的一个零点,则是函数与的交点的横坐标,画出函数图像,如图所示,
则当时,在下方,即;
当时,在上方,即,
故选:B
【点睛】考查函数的零点问题,考查数形结合思想与转化思想
4.(2019·浙江高考真题)在同一直角坐标系中,函数且的图象可能是
A. B.
C. D.
【答案】D
【分析】通过讨论的不同取值情况,分别讨论本题指数函数、对数函数的图象和,结合选项,判断得出正确结论.题目不难,注重重要知识、基础知识、逻辑推理能力的考查.
【详解】
当时,函数过定点且单调递减,则函数过定点且单调递增,函数过定点且单调递减,D选项符合;当时,函数过定点且单调递增,则函数过定点且单调递减,函数过定点且单调递增,各选项均不符合.综上,选D.
【点睛】易出现的错误有,一是指数函数、对数函数的图象和性质掌握不熟,导致判断失误;二是不能通过讨论的不同取值范围,认识函数的单调性.
5.(2019·浙江高考真题)已知,函数,若函数恰有三个零点,则
A. B.
C. D.
【答案】C
【分析】
当时,最多一个零点;当时,,利用导数研究函数的单调性,根据单调性画函数草图,根据草图可得.
【详解】
当时,,得;最多一个零点;
当时,,
,
当,即时,,在,上递增,最多一个零点.不合题意;
当,即时,令得,,函数递增,令得,,函数递减;函数最多有2个零点;
根据题意函数恰有3个零点函数在上有一个零点,在,上有2个零点,
如图:
且,
解得,,.
故选.
【点睛】
遇到此类问题,不少考生会一筹莫展.由于方程中涉及两个参数,故按“一元化”想法,逐步分类讨论,这一过程中有可能分类不全面、不彻底.
6.(2018·浙江高考真题)函数y=sin2x的图象可能是
A. B.
C. D.
【答案】D
【详解】:先研究函数的奇偶性,再研究函数在上的符号,即可判断选择.
详解:令,
因为,所以为奇函数,排除选项A,B;
因为时,,所以排除选项C,选D.
点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复.
7.(2017·浙江高考真题)若函数在区间[0,1]上的最大值是M,最小值是m,则的值
A.与a有关,且与b有关 B.与a有关,但与b无关
C.与a无关,且与b无关 D.与a无关,但与b有关
【答案】B
【详解】
因为最值在中取,所以最值之差一定与无关,选B.
【名师点睛】对于二次函数的最值或值域问题,通常先判断函数图象对称轴与所给自变量闭区间的关系,结合图象,当函数图象开口向上时,若对称轴在区间的左边,则函数在所给区间内单调递增;若对称轴在区间的右边,则函数在所给区间内单调递减;若对称轴在区间内,则函数图象顶点的纵坐标为最小值,区间端点距离对称轴较远的一端取得函数的最大值.
8.(2016·浙江高考真题(理))已知e为自然对数的底数,设函数,则.
A.当k=1时,f(x)在x=1处取到极小值 B.当k=1时,f(x)在x=1处取到极大值
C.当k=2时,f(x)在x=1处取到极小值 D.当k=2时,f(x)在x=1处取到极大值
【答案】C
【详解】
当k=1时,函数f(x)=(ex−1)(x−1).
求导函数可得f′(x)=ex(x−1)+(ex−1)=(xex−1)
f′(1)=e−1≠0,f′(2)=2e2−1≠0,
则f(x)在在x=1处与在x=2处均取不到极值,
当k=2时,函数f(x)=(ex−1)(x−1)2.
求导函数可得f′(x)=ex(x−1)2+2(ex−1)(x−1)=(x−1)(xex+ex−2)
∴当x=1,f′(x)=0,且当x>1时,f′(x)>0,当x0|a|+k–k–a≥0,
f(n)–kn–a
相关试卷
这是一份专题02 函数-十年高考数学(理)客观题(2012-2021)真题分项详解,文件包含专题02函数解析版-十年高考数学理客观题2012-2021真题分项详解doc、专题02函数原卷版-十年高考数学理客观题2012-2021真题分项详解doc等2份试卷配套教学资源,其中试卷共93页, 欢迎下载使用。
这是一份专题10 复数-十年(2012-2021)高考数学真题分项汇编(浙江专用),文件包含专题10复数原卷版docx、专题10复数解析版docx等2份试卷配套教学资源,其中试卷共7页, 欢迎下载使用。
这是一份专题09 计数原理与概率统计-十年(2012-2021)高考数学真题分项汇编(浙江专用),文件包含专题09计数原理与概率统计原卷版docx、专题09计数原理与概率统计解析版docx等2份试卷配套教学资源,其中试卷共19页, 欢迎下载使用。