年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    13.4 课题学习 最短路径问题课件PPT

    立即下载
    加入资料篮
    13.4  课题学习  最短路径问题课件PPT第1页
    13.4  课题学习  最短路径问题课件PPT第2页
    13.4  课题学习  最短路径问题课件PPT第3页
    13.4  课题学习  最短路径问题课件PPT第4页
    13.4  课题学习  最短路径问题课件PPT第5页
    13.4  课题学习  最短路径问题课件PPT第6页
    13.4  课题学习  最短路径问题课件PPT第7页
    13.4  课题学习  最短路径问题课件PPT第8页
    还剩16页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教版八年级上册13.4课题学习 最短路径问题课前预习课件ppt

    展开

    这是一份人教版八年级上册13.4课题学习 最短路径问题课前预习课件ppt,共24页。PPT课件主要包含了当堂练习,课堂小结,导入新课,讲授新课,复习引入,斜边大于直角边,牧马人饮马问题,方法揭晓,造桥选址问题,思维分析等内容,欢迎下载使用。
    1.能利用轴对称解决简单的最短路径问题.(难点)2.体会图形的变化在解决最值问题中的作用,感悟转化思想.(重点)
    1.如图,连接A、B两点的所有连线中,哪条最短?为什么?
    ②最短,因为两点之间,线段最短
    2.如图,点P是直线l外一点,点P与该直线l上各点连接的所有线段中,哪条最短?为什么?
    PC最短,因为垂线段最短
    3.在我们前面的学习中,还有哪些涉及比较线段大小的基本事实?
    三角形三边关系:两边之和大于第三边;
    4.如图,如何做点A关于直线l的对称点?
    “两点的所有连线中,线段最短”“连接直线外一点与直线上各点的所有线段中,垂线段最短”等的问题,我们称之为最短路径问题.现实生活中经常涉及到选择最短路径问题,本节将利用数学知识探究数学史的著名的“牧马人饮马问题”及“造桥选址问题”.
    如图,牧马人从点A地出发,到一条笔直的河边l饮马,然后到B地,牧马人到河边的什么地方饮马,可使所走的路径最短?
    作图问题:在直线l上求作一点C,使AC+BC最短问题.
    问题1 现在假设点A,B分别是直线l异侧的两个点,如何在l上找到一个点,使得这个点到点A,点B的距离的和最短?
    根据是“两点之间,线段最短”,可知这个交点即为所求.
    连接AB,与直线l相交于一点C.
    问题2 如果点A,B分别是直线l同侧的两个点,又应该如何解决?
    想一想: 对于问题2,如何将点B“移”到l 的另一侧B′处,满足直线l 上的任意一点C,都保持CB 与CB′的长度相等?
    利用轴对称,作出点B关于直线l的对称点B′.
    作法:(1)作点B 关于直线l 的对称点B′;(2)连接AB′,与直线l 相交于点C. 则点C 即为所求.
    问题3 你能用所学的知识证明AC +BC最短吗?
    证明:如图,在直线l 上任取一点C′(与点C 不重合),连接AC′,BC′,B′C′.由轴对称的性质知, BC =B′C,BC′=B′C′. ∴ AC +BC = AC +B′C = AB′, ∴ AC′+BC′= AC′+B′C′.
    在△AB′C′中, AB′<AC′+B′C′, ∴ AC +BC<AC′+BC′.  即 AC +BC 最短.
    如图,A和B两地在一条河的两岸,现要在河上造一座桥MN。桥造在何处可使从A到B的路径AMNB最短(假定河的两岸是平行的直线,桥要与河垂直)?
    1.如图假定任选位置造桥MN,连接AM和BN,从A到B的路径是AM+MN+BN,那么怎样确定什么情况下最短呢?
    2.利用线段公理解决问题我们遇到了什么障碍呢?
    我们能否在不改变AM+MN+BN的前提下把桥转化到一侧呢?什么图形变换能帮助我们呢?
    3.把桥平移到和A相连.
    4.把桥平移到和B相连.
    AM+MN+BN长度改变了
    把A或B分别向下或上平移一个桥长
    那么怎样确定桥的位置呢?
    如图,平移A到A1,使AA1等于河宽,连接A1B交河岸于N作桥MN,此时路径AM+MN+BN最短.
    理由:另任作桥M1N1,连接AM1,BN1,A1N1.
    由平移性质可知,AM=A1N,AA1=MN=M1N1,AM1=A1N1.
    AM+MN+BN转化为AA1+A1B,而AM1+M1N1+BN1转化为AA1+A1N1+BN1.
    在△A1N1B中,由线段公理知A1N1+BN1>A1B.
    因此AM1+M1N1+BN1> AM+MN+BN.
    证明:由平移的性质,得 BN∥EM 且BN=EM, MN=CD, BD∥CE, BD=CE,所以A,B两地的距离:AM+MN+BN=AM+MN+EM=AE+MN,若桥的位置建在CD处,连接AC,CD,DB,CE,则AB两地的距离为:AC+CD+DB=AC+CD+CE=AC+CE+MN,在△ACE中,∵AC+CE>AE, ∴AC+CE+MN>AE+MN,即AC+CD+DB >AM+MN+BN,所以桥的位置建在MN处,AB两地的路程最短.
    解决最短路径问题的方法
    1.在解决最短路径问题时,我们通常利用轴对称、平移等变化把已知问题转化为容易解决的问题,从而作出最短路径的选择.
    2.当涉及含有固定线段“桥”的方法是构造平行四边形,从而将问题转化为平行四边形的问题解答.
    1.如图,直线l是一条河,P、Q是两个村庄.欲在l上的某处修建一个水泵站,向P、Q两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需要管道最短的是( )
    2.如图,牧童在A处放马,其家在B处,A、B到河岸的距离分别为AC和BD,且AC=BD,若点A到河岸CD的中点的距离为500米,则牧童从A处把马牵到河边饮水再回家,所走的最短距离是 米.
    3.如图,荆州古城河在CC′处直角转弯,河宽相同,从A处到B处,须经两座桥:DD ′,EE ′(桥宽不计),设护城河以及两座桥都是东西、南北方向的,怎样架桥可使ADD ′E ′EB的路程最短?
    解:作AF⊥CD,且AF=河宽,作BG ⊥CE,且BG=河宽,连接GF,与河岸相交于E ′,D′.作DD′,EE′即为桥.
    理由:由作图法可知,AF//DD′,AF=DD′,则四边形AFD′D为平行四边形,于是AD=FD′,同理,BE=GE′,由两点之间线段最短可知,GF最小.

    相关课件

    初中人教版13.4课题学习 最短路径问题课前预习课件ppt:

    这是一份初中人教版13.4课题学习 最短路径问题课前预习课件ppt,共16页。

    数学八年级上册13.4课题学习 最短路径问题试讲课教学课件ppt:

    这是一份数学八年级上册13.4课题学习 最短路径问题试讲课教学课件ppt,共16页。PPT课件主要包含了将军饮马问题等内容,欢迎下载使用。

    2021学年13.4课题学习 最短路径问题教学ppt课件:

    这是一份2021学年13.4课题学习 最短路径问题教学ppt课件,共19页。PPT课件主要包含了导入--原题再现,题目解析,变式训练,中考链接,拓展提升,分析讲解,做对称,问题剖析,将军饮马的12种模型,最短路径--小结等内容,欢迎下载使用。

    文档详情页底部广告位
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map