终身会员
搜索
    上传资料 赚现金

    新教材2022版高考人教A版数学一轮复习课件:2.4 幂函数及三类不等式的解法(绝对值、高次、无理)

    立即下载
    加入资料篮
    新教材2022版高考人教A版数学一轮复习课件:2.4 幂函数及三类不等式的解法(绝对值、高次、无理)第1页
    新教材2022版高考人教A版数学一轮复习课件:2.4 幂函数及三类不等式的解法(绝对值、高次、无理)第2页
    新教材2022版高考人教A版数学一轮复习课件:2.4 幂函数及三类不等式的解法(绝对值、高次、无理)第3页
    新教材2022版高考人教A版数学一轮复习课件:2.4 幂函数及三类不等式的解法(绝对值、高次、无理)第4页
    新教材2022版高考人教A版数学一轮复习课件:2.4 幂函数及三类不等式的解法(绝对值、高次、无理)第5页
    新教材2022版高考人教A版数学一轮复习课件:2.4 幂函数及三类不等式的解法(绝对值、高次、无理)第6页
    新教材2022版高考人教A版数学一轮复习课件:2.4 幂函数及三类不等式的解法(绝对值、高次、无理)第7页
    新教材2022版高考人教A版数学一轮复习课件:2.4 幂函数及三类不等式的解法(绝对值、高次、无理)第8页
    还剩49页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    新教材2022版高考人教A版数学一轮复习课件:2.4 幂函数及三类不等式的解法(绝对值、高次、无理)

    展开

    这是一份新教材2022版高考人教A版数学一轮复习课件:2.4 幂函数及三类不等式的解法(绝对值、高次、无理),共57页。PPT课件主要包含了内容索引,必备知识预案自诊,知识梳理,yxα,自变量,0+∞,单调递增,-aa,常用结论,考点自诊等内容,欢迎下载使用。


    案例探究(三) f(x)=ax+ (ab≠0)型函数的性质及应用
    1.幂函数(1)幂函数的定义:一般地,函数     叫做幂函数,其中x是      ,α是    . (2)五种幂函数的图象
    (3)五种幂函数的性质
    {x|x∈R,且x≠0}
    {y|y∈R,且y≠0}
    当x∈[0,+∞)时,单调递增;当x∈(-∞,0)时,单调递减
    当x∈(0,+∞)时,单调递减;当x∈(-∞,0)时,单调递减
    2.分式不等式的解法
    3.绝对值不等式的解法(1)含绝对值的不等式|x|a的解集
    (2)|f(x)|>|g(x)|⇔[f(x)]2>[g(x)]2.(3)|f(x)|>g(x)⇔f(x)>g(x)或f(x)<-g(x).(4)|f(x)|0)和|x-a|+|x-b|≤c(c>0)型不等式的解法①利用绝对值不等式的几何意义求解,体现了数形结合的思想;②利用“零点分段法”求解,体现了分类讨论的思想.
    4.无理不等式的解法
    5.一元高次不等式的解法(标根穿线法)(1)化x的最高次系数为正;(2)在数轴上标出方程的根;(3)从数轴上方穿针,奇穿偶回;(4)写出解集.
    1.幂函数y=xα的图象在第一象限的两个重要结论(1)恒过点(1,1);(2)当x∈(0,1)时,α越大,函数值越小;当x∈(1,+∞)时,α越大,函数值越大.
    1.判断下列结论是否正确,正确的画“√”,错误的画“×”.(2)幂函数y=xα,当α>0时,在第一象限内,函数单调递增.(  )(3)幂函数y=xα,当α<0时,在第一象限内,函数单调递减.(  )(4)有些幂函数的图象经过第四象限.(  )(5)幂函数的图象必过(0,0)和(1,1).(  )
    2.如图是①y=xa;②y=xb;③y=xc在第一象限的图象,则a,b,c的大小关系为(  )A.a>b>cB.a答案 D 解析 根据幂函数的性质,可知选D.
    4.不等式(x-1)(x-2)(x-3)<0的解集为    . 
    答案 (-∞,1)∪(2,3) 解析 方程(x-1)(x-2)(x-3)=0的三个根分别为1,2,3,标根穿线如图所示.故解集为(-∞,1)∪(2,3).
    答案 (1)C (2)B 
    解题心得1.幂函数y=xα的特点:①系数必须为1,②指数必须为常数.2.幂函数中底数是自变量,指数是常数,而指数函数中底数是常数,指数是自变量.
    答案 (1)B (2)C 
    【例2】 (1)幂函数y=f(x)的图象过点(4,2),则幂函数y=f(x)的图象是(  )(2)已知幂函数 (n∈Z)的图象关于y 轴对称,且在(0,+∞)上单调递减,则n的值为(  )A.-3B.1C.2D.1或2
    解题心得探讨幂函数图象的分布规律,应先观察图象是否过原点,过原点时α>0,否则α≤0;若α>0,再观察第一象限的图象是上凸还是下凸,上凸时0<α<1,下凸时α>1;最后由x>1时,在第一象限内α的值按逆时针方向依次增大得出结论.
    对点训练2(1)下面给出4个幂函数的图象,则图象与函数的大致对应的是(  )
    (2)(2020河北定州模拟,理4)已知点(a, )在幂函数f(x)=(a-1)xb的图象上,则函数f(x)是(  )A.奇函数B.偶函数C.定义域内的减函数D.定义域内的增函数
    答案 (1)B (2)A 
    解题心得1.幂函数的主要性质(1)当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增;(2)当α<0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减.2.比较两个幂的大小,如果指数相同而底数不同,此时利用幂函数的单调性来比较大小;如果底数相同而指数不同,此时利用指数函数的单调性来比较大小;如果两个幂指数、底数全不同,此时需要引入中间变量,常用的中间变量有0,1或由一个幂的底数和另一个幂的指数组成的幂.
    答案 (1)(3,5) (2)A 
    【例4】 解下列不等式:(1)|x2+x|≤3x;(2)|x-1|+|x+2|<5;(3)|2x-1|-|x-2|<0.
    (方法2)观察到若要使得不等式|x2+x|≤3x成立,则3x≥0,即x≥0,进而|x2+x|内部恒为正数,绝对值直接去掉,即只需解x2+x≤3x即可.解得0≤x≤2,∴不等式的解集为[0,2].
    (2)令两个绝对值分别为零解得x=1,x=-2,①当x>1时,不等式变为x-1+x+2<5,解得x<2,∴1-3,∴-3解题心得1.含绝对值的不等式要注意观察式子特点,选择更简便的方法.2.零点分段法的好处在于,一段范围可将所有的绝对值一次性去掉,缺点在于需要进行分类讨论,对学生书写的规范和分类讨论习惯提出了要求,以及如何整理结果,这些细节部分均要做好,才能保证答案的正确性.
    对点训练4(1)不等式|3x-4|>x2的解集为(  )A.(-4,1)B.(-1,4)C.(-4,-1)∪(1,4)D.(-∞,-4)∪(1,+∞)(2)不等式|x+3|>|2-x|的解集是    . (3)设x∈R,不等式|x|+|2x-1|>2的解集为   . 
    解析 (1)由|3x-4|>x2可得3x-4>x2或3x-4<-x2,解3x-4>x2得无解;解3x-4<-x2得-4【例5】 (1)解不等式(x-2)2(x-3)3(x+1)<0.(2)解不等式(x-3)(x+1)(x2+4x+4)≤0.
    解 (1)①检查各因式中x的符号均正;②求得相应方程的根为-1,2,3(注意:2是二重根,3是三重根);③在数轴上表示各根并穿线,每个根穿一次(自右上方开始,如图),④∴原不等式的解集为{x|-1解题心得1.在本例(1)中因为3是三重根,所以在点C处穿三次,结果相当于直接穿一次;2是二重根,所以在点B处穿两次,结果相当于没穿.由此看出,对于因式(x-x1)n,当n为奇数时,曲线在点x1处穿过数轴;当n为偶数时,曲线在点x1处不穿过数轴,归纳为“奇穿偶不穿”.2.在本例(2)中,不等式若带“=”号,点画为实心,解集边界处应有等号;另外,线虽不穿-2点,但x=-2满足“=”的条件,不能漏掉.
    对点训练5解不等式x(x-1)2(2-x)(x+1)≤0.
    解 原不等式可化为x(x-1)2(x-2)(x+1)≥0,标根穿线,如图:∴原不等式的解集为[-1,0]∪{1}∪[2,+∞)
    解题心得无理不等式的等价转化,即由无理不等式转化为等价的有理不等式求通解,要求必须熟练掌握;其他解法要根据不等式的具体情况而定.
    案例探究(三) f(x)=ax+ (ab≠0)型函数的性质及应用
    (1)定义域为(-∞,0)∪(0,+∞),值域为R.(2)奇函数.(3)函数在(-∞,0),(0,+∞)上单调递增,无最值.
    (1)定义域为(-∞,0)∪(0,+∞),值域为R.(2)奇函数.(3)函数在(-∞,0),(0,+∞)上单调递减,无最值.
    (5)图象:对勾函数就是以y轴和直线y=ax为渐近线的双曲线.
    (6)渐近线:y轴和直线y=ax.
    跟踪训练1已知函数f(x)=2x,且f(x)=g(x)+h(x),其中g(x)为奇函数,h(x)为偶函数,若不等式2ag(x)+h(2x)≥0对任意x∈[1,2]恒成立,求实数a的取值范围.
    【例2】 某村计划建造一个室内面积为800 m2的矩形蔬菜温室,在矩形温室内,沿左、右两侧与后侧内墙各保留1 m宽的通道,沿前侧内墙保留3 m宽的空地,当矩形温室的边长各为多少时,蔬菜的种植面积最大?最大面积是多少?
    跟踪训练2为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系C(x)= (0≤x≤10),若不建隔热层,每年能源消耗费用为8万元,设f(x)为隔热层建造费用与20年的能源消耗费用之和.(1)求k的值及f(x)的表达式;(2)求当隔热层建造为多厚时,总费用f(x)达到最小,并求最小值.

    相关课件

    2024届人教A版高考数学一轮复习二次函数与幂函数课件:

    这是一份2024届人教A版高考数学一轮复习二次函数与幂函数课件,共34页。PPT课件主要包含了二次函数,考点1,二次函数的图象与性质,单调递增,单调递减,幂函数,考点2,xx≥0,yy≠0,偶函数等内容,欢迎下载使用。

    高考数学一轮复习第2章2.4幂函数及三类不等式的解法绝对值高次无理课件:

    这是一份高考数学一轮复习第2章2.4幂函数及三类不等式的解法绝对值高次无理课件,共57页。PPT课件主要包含了内容索引,必备知识预案自诊,知识梳理,yxα,自变量,0+∞,单调递增,-aa,常用结论,考点自诊等内容,欢迎下载使用。

    人教B版 (2019)必修 第一册第二章 等式与不等式2.2 不等式2.2.3 一元二次不等式的解法图文课件ppt:

    这是一份人教B版 (2019)必修 第一册第二章 等式与不等式2.2 不等式2.2.3 一元二次不等式的解法图文课件ppt,共60页。PPT课件主要包含了知识梳理,x1x2,注意点,反思感悟,求下列不等式的解集,随堂演练,A显然不可能,x-1x6,课时对点练,aa≤1等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        新教材2022版高考人教A版数学一轮复习课件:2.4 幂函数及三类不等式的解法(绝对值、高次、无理)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map