所属成套资源:沪教版(上海)高二数学上册教案
高中7.6归纳-猜想-论证教案
展开这是一份高中7.6归纳-猜想-论证教案,共6页。教案主要包含了教学目标,教学重难点,教学过程等内容,欢迎下载使用。
归纳—猜想—论证
【教学目标】
1.对数学归纳法的认识不断深化。
2.帮助学生掌握用不完全归纳法发现规律,再用数学归纳法证明规律的科学思维方法。
3.培养学生在观察的基础上进行归纳猜想和发现的能力,进而引导学生去探求事物的内在的本质的联系。
【教学重难点】
用不完全归纳法猜想出问题的结论,并用数学归纳法加以证明。
【教学过程】
一、复习引入
师:我们已学习了数学归纳法,知道它是一种证明方法。请问:它适用于哪些问题的证明?
生:与连续自然数n有关的命题。
师:用数学归纳法证明的一般步骤是什么?
生:共有两个步骤:
(1)证明当n取第一个值n0时结论正确;
(2)假设当n=k(k∈N,且k≥n0)时结论正确,证明当n=k+1时,结论也正确。
师:这两个步骤的作用是什么?
生:第(1)步是一次验证,第(2)步是用一次逻辑推理代替了无数次验证过程。
师:这实质上是在说明这个证明具有递推性。第(1)步是递推的始点;第(2)步是递推的依据。递推是数学归纳法的核心。用数学归纳法证题时应注意什么?
生:两个步骤缺一不可。证第(2)步时,必须用归纳假设。即在n=k成立的前提下推出n=k+1成立。
师:只有这样,才能保证递推关系的存在,才真正是用数学归纳法证题。
今天,我们一起继续研究解决一些与连续自然数有关的命题。
二、归纳、猜想、证明
1.问题的提出。
a3,a4,由此推测计算an的公式,然后用数学归纳法证明这个公式。
师:这个题目看起来庞大,其实它包括了计算、推测、证明三部分,我们可以先一部分、一部分地处理。
(学生很快活跃起来,计算工作迅速完成,请一位同学口述他的计算过程,教师板演到黑板上。)
师:正确。怎么推测an的计算公式呢?可以相互讨论一下。
2.归纳与猜想。
生:我猜出了一个an的计算公式。(许多学生在偷笑)。
师:大家在笑什么?是笑他的“猜”吗?“猜”有什么不好。人们对事物的认识很多都是以“猜”开始的,探索新领域就需要大胆,敢猜敢想,当然还要有严谨的思维做后盾。我想他的“猜”,也一定不是胡蒙乱猜,一定会有他的道理的,说说你是怎么“猜”的。
师:大家也一定觉得他说的有道理,但为什么用“猜想”呢?
生:我只是通过对a1,a2,a3,a4的观察,就去归纳an的计算公式,这个公式不一定对,所以还只能是“猜想”。
师:他是经观察有限个特例从中获取一定信息、分析它们共同具有的特征后,归纳出对一切自然数的一般结论。他用的是不完全归纳法。他的结论虽不一定正确,但这却是探索新知识,发现新规律的重要途径,归纳法是可以用于猜测与发现的。
我们一起把他的“猜想”记录下来。
(教师板书。)
师:这个“猜想”的正确性怎么能保证?
生:用数学归纳法证明。
3.证明。
(学生口述,教师板书。)
师:证得非常好。在证明n=k+1时,每一步的依据是什么?
生:因为在这里,能否用上归纳假设是关键。因此先根据定义用ak表示ak+1,然后就可代入归纳假设,再化简整理,即可证出n=k+1的相应结论。
师:这才能体现出递推性。必须注意要由归纳假设(n=k时)的正确性来推n=k+1时的正确性,这是用数学归纳法证题的核心与关键。
回顾我们的解题过程,光用不完全归纳法对事物的一部分特例,通过观察,加以归纳,得到猜想,再用数学归纳法对猜想加以证明。这种从观察到归纳到猜想到证明的过程,是一种科学的思维模式,也正是我们今天要研究的课题。
(板书课题:归纳、猜想、证明。)
4.不完全归纳法中的“猜测”二法。
师:高斯说过:“发现和创新比命题论证更重要,因为一旦抓住真理之后,补行证明往往是时间问题。”
在“归纳、猜想、证明”的过程中,猜想准确是关键。我们再看一个例题,在解题过程中重点思考:如何猜想。
且n≥2)。先求出f(2),f(3),f(4)的值,再由此推测f(n)的计算公式,并对其正确性作出证明。
(学生们在笔记本上解答,教师巡视完成情况,请两位同学把自己的解法写到黑板上。)
(学生甲书写如下。)
则f(n)=f(n-1)+lg2n-1(n≥2)。
f(3)=f(2)+lg23-1=0+2lg2=2lg2,
f(4)=f(3)+lg24-1=2lg2+3lg2=5lg2.
猜想:……
(学生乙书写如下。)
得f(n)=f(n-1)+lg2n-1(n≥2)。
则f(2)=f(1)+lg22-1=-lg2+(2-1)lg2=(-1+2-1)lg2,
f(3)=f(2)+lg23-1=(-1+2-1+3-1)lg2,
f(4)=f(3)+lg24-1
=(-1+2-1+3-1)lg2+(4-1)lg2
=(-1+2-1+3-1+4-1)lg2.
由此可以推测:
f(n)=[-1+(2-1)+(3-1)+…+(n-1)]lg2
=[-1+1+2+…+(n-1)]lg2
f(k+1)=f(k)+lg2(k+1)-1
师:我们一起来看两位同学的解题过程。学生甲的计算结果正确,但没有猜出来。学生乙没有求出f(2),f(3),f(4)的值,但猜出了计算公式,并用数学归纳法给予了证明。题目要求求值,还是应写出结果的,说说你这么写的理由吧。
生乙:其实一开始,我跟学生甲一样,先算出了f(2),f(3),f(4)的值,但从-lg2,0,2lg2,5lg2我除发现了应是多少倍的lg2就再无收获了,这“多少倍的”从-1,0,2,5实在无法断定,于是我就往回找,从计算的过程中,我发现了规律,一高兴就忘了写结果了。
师:你是怎么从计算的过程中发现规律的?
生乙:我是看f(2),f(3),f(4)每一个的计算过程都是在前一个结果的基础上加上(n-1)lg2,也就是从n=2,3,4,…分别代入递推关系式f(n)=f(n-1)+(n-1)lg2的求值计算过程中得到的。这里算每一个时要用前一个的结果,写时也用它的计算过程来表示,这样就容易发现规律了。
师:实际上,他是通过算式的结构特征作出归纳、推测的,这种归纳我们不妨称之为:“猜结构”,而例1那种归纳我们就叫它做“猜结果”吧。
其实,我们在猜想时,往往是先看结果,从结果得不出猜想时,再看过程,从解题过程中的式子结构去思考。但不管怎么猜想,都离不开对题目特征的认识。
学生乙在用数学归纳法证明猜想时,注意了两个步骤及归纳假设的使用,证明正确。这个问题解决得非常好。
归纳、猜想、证明是一种科学的思维方法,重要的解题途径,它是我们认识数学的一把钥匙。
三、练习
已知数列{an}和{bn},其中:
an=1+3+5+…+(2n+1),bn=1+2+22+…+2n-1,(n∈N+)。
当n∈N+时,试比较an与bn的大小,并证明你的结论。
(教师巡视学生的解题情况,适时点评。)
相关教案
这是一份高中9.1矩阵的概念教学设计,共2页。教案主要包含了问题情境,建构数学,数学应用等内容,欢迎下载使用。
这是一份数学高中二年级 第一学期7.5数学归纳法的应用教学设计,共3页。教案主要包含了教学目标,教学重难点,教学过程等内容,欢迎下载使用。
这是一份沪教版高中二年级 第一学期7.4数学归纳法教案设计,共6页。教案主要包含了教学目标,教学重难点,教学内容,教学过程,教学反思等内容,欢迎下载使用。