![2022年高考数学一轮复习考点练习14《导数与函数的极值、最值》(含答案详解)第1页](http://img-preview.51jiaoxi.com/3/3/12197735/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年高考数学一轮复习考点练习14《导数与函数的极值、最值》(含答案详解)第2页](http://img-preview.51jiaoxi.com/3/3/12197735/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:2022年高考数学一轮复习考点练习全套(含答案详解)
2022年高考数学一轮复习考点练习14《导数与函数的极值、最值》(含答案详解)
展开
这是一份2022年高考数学一轮复习考点练习14《导数与函数的极值、最值》(含答案详解),共5页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。
一轮复习考点练习14《导数与函数的极值、最值》 一、选择题1.函数f(x)=(x2-1)2+2的极值点是( )A.x=1 B.x=-1 C.x=1或-1或0 D.x=02.若函数f(x)=ax3+bx2+cx+d有极值,则导函数f′(x)的图象不可能是( )3.已知函数f(x)=x3-px2-qx的图象与x轴切于点(1,0),则f(x)的极大值、极小值分别为( )A.-,0 B.0,- C.,0 D.0,4.函数f(x)=x2-5x+2ex的极值点所在的区间为( )A.(0,1) B.(-1,0) C.(1,2) D.(-2,-1)5.设函数f(x)=ax2+bx+c(a,b,c∈R).若x=-1为函数f(x)ex的一个极值点,则下列图象不可能为y=f(x)图象的是( )6.已知函数f(x)=x3+bx2+cx的图象如图所示,则x+x=( )A. B. C. D.7.若函数f(x)=x3+x2-在区间(a,a+5)上存在最小值,则实数a的取值范围是( )A.[-5,0) B.(-5,0) C.[-3,0) D.(-3,0)8.已知y=f(x)是奇函数,当x∈(0,2)时,f(x)=ln x-ax(a>),当x∈(-2,0)时,f(x)的最小值为1,则a=( )A. B. C. D.19.若函数f(x)=2x2-ln x在其定义域内的一个子区间(k-1,k+1)内存在最小值,则实数k的取值范围是( )A.[1,+∞) B.[1,) C.[1,2) D.[,2)10.已知函数f(x)=(a>0)在[1,+∞)上的最大值为,则a的值为( )A.-1 B. C. D.+111.设函数f(x)的定义域为R,x0(x0≠0)是f(x)的极大值点,以下结论一定正确的是( )A.∀x∈R,f(x)≤f(x0)B.-x0是f(-x)的极小值点C.-x0是-f(x)的极小值点D.-x0是-f(-x)的极小值点12.已知函数f(x)=x3-2x2-4x-7,其导函数为f ′(x),给出以下命题:①f(x)的单调递减区间是;②f(x)的极小值是-15;③当a>2时,对任意的x>2且x≠a,恒有f(x)>f(a)+f ′(a)(x-a);④函数f(x)有且只有一个零点.其中真命题的个数为( )A.1 B.2 C.3 D.4二、填空题13.已知函数f(x)=2f′(1)ln x-x,则f(x)的极大值为________.14.f(x)=x(x-c)2在x=2处有极大值,则常数c的值为________.15.函数f(x)=xsinx+cosx在[,π]上的最大值为 .16.若函数f(x)=2x3-ax2+1(a∈R)在(0,+∞)内有且只有一个零点,则f(x)在[-1,1]上的最大值与最小值的和为________.
0.答案解析1.答案为:C;解析:∵f(x)=x4-2x2+3,∴由f′(x)=4x3-4x=4x(x+1)(x-1)=0,得x=0或x=1或x=-1,又当x<-1时,f′(x)<0,当-1<x<0时,f′(x)>0,当0<x<1时,f′(x)<0,当x>1时,f′(x)>0,∴x=0,1,-1都是f(x)的极值点.2.答案为:D.解析:若函数f(x)=ax3+bx2+cx+d有极值,则此函数在某点两侧的单调性相反,也就是说导函数f′(x)在此点两侧的导函数值的符号相反,所以导函数的图象要穿过x轴,观察四个选项中的图象只有D项是不符合要求的,即f′(x)的图象不可能是D.3.答案为:C解析:由题意知, f ′(x)=3x2-2px-q,由f ′(1)=0, f(1)=0得解得p=2,q=-1,∴f(x)=x3-2x2+x.由f ′(x)=3x2-4x+1=0,得x=或x=1,易知当x=时, f(x)取极大值,当x=1时, f(x)取极小值0.4.答案为:A;解析:∵f′(x)=2x-5+2ex为增函数,f′(0)=-3<0,f′(1)=2e-3>0,∵f′(x)=2x-5+2ex的零点在区间(0,1)上,∴f(x)=x2-5x+2ex的极值点在区间(0,1)上.5.答案为:D;解析:因为[f(x)ex]′=f′(x)ex+f(x)(ex)′=[f(x)+f′(x)]ex,且x=-1为函数f(x)ex的一个极值点,所以f(-1)+f′(-1)=0;选项D中,f(-1)>0,f′(-1)>0,不满足f′(-1)+f(-1)=0.6.答案为:C解析:由图象可知f(x)的图象过点(1,0)与(2,0),因此解得b=-3,c=2,所以f(x)=x3-3x2+2x,所以f ′(x)=3x2-6x+2.因为x1,x2是方程f ′(x)=3x2-6x+2=0的两根,所以x1+x2=2,x1x2=,所以x+x=(x1+x2)2-2x1x2=4-=.7.答案为:C解析:由题意知, f ′(x)=x2+2x=x(x+2),令f ′(x)=0,解得x=0或-2,故f(x)在(-∞,-2),(0,+∞)上是增函数,在(-2,0)上是减函数,做出其图象如图所示.令x3+x2-=-得,x=0或x=-3,则结合图象可知,解得 a∈[-3,0).故选C.8.答案为:D;解析:因为f(x)是奇函数,所以f(x)在(0,2)上的最大值为-1.当x∈(0,2)时,f′(x)=-a,令f′(x)=0,得x=,又a>,所以0<<2.当x<时,f′(x)>0,f(x)在(0,)上单调递增;当x>时,f′(x)<0,f(x)在(,2)上单调递减,所以f(x)max=f()=ln -a·=-1,解得a=1.9.答案为:B;解析:因为f(x)的定义域为(0,+∞),又因为f′(x)=4x-,所以由f′(x)=0解得x=,由题意得解得1≤k<.10.答案为:A解析:由f(x)=得f ′(x)=.当a>1时,若x>,则f ′(x)<0, f(x)单调递减;若1<x<,则f ′(x)>0, f(x)单调递增.故当x=时,函数f(x)有最大值=,得a=<1,不合题意;当a=1时,函数f(x)在[1,+∞)上单调递减,最大值为f(1)=,不合题意;当0<a<1时,函数f(x)在[1,+∞)上单调递减,此时最大值为f(1)==,得a=-1,符合题意,故a的值为-1.选A.11.答案为:D;解析:函数f(x)的极大值f(x0)不一定是最大值,故A错误;f(x)与-f(-x)关于原点对称,故x0(x0≠0)是f(x)的极大值点时,-x0是-f(-x)的极小值点,故选D.12.答案为:C解析:f ′(x)=3x2-4x-4=(x-2)(3x+2).①令f ′(x)<0,得-<x<2,所以f(x)的单调递减区间是;②令f ′(x)>0,得x<-或x>2,结合①可知f(x)的极小值是f(2)=-15;③显然当a>2时,对任意的x>2且x≠a,恒有f(x)>f(a)+f ′(a)(x-a)不成立;④f=-<0, f(2)=-15<0,并结合①②易知f(x)有且只有一个零点.故选C.13.答案为:2ln 2-2.解析:因为f′(x)=-1,所以f′(1)=2f′(1)-1,所以f′(1)=1,故f(x)=2ln x-x,f′(x)=-1=,则f(x)在(0,2)上为增函数,在(2,+∞)上为减函数,所以当x=2时f(x)取得极大值,且f(x)极大值=f(2)=2ln 2-2.14.答案为:6解析:f(x)=x3-2cx2+c2x,f′(x)=3x2-4cx+c2,f′(2)=0⇒c=2或c=6,若c=2,f′(x)=3x2-8x+4,令f′(x)>0⇒x<或x>2,f′(x)<0⇒<x<2,故函数在(-∞,)及(2,+∞)上单调递增,在(,2)上单调递减,所以x=2是极小值点,故c=2(不合题意,舍去),c=6.15.答案为:.解析:因为f′(x)=sinx+xcosx-sinx=xcosx,当x∈[,]时,f′(x)≥0,函数f(x)单调递增,当x∈(,π]时,f′(x)<0,函数f(x)单调递减,所以f(x)max=f()=.16.答案为:-3解析:f′(x)=6x2-2ax=2x(3x-a)(x>0).①当a≤0时,f′(x)>0,f(x)在(0,+∞)上递增,又f(0)=1,∴f(x)在(0,+∞)上无零点.②当a>0时,由f′(x)>0解得x>,由f′(x)<0解得0<x<,∴f(x)在(0,)上递减,在(,+∞)上递增.又f(x)只有一个零点,∴f()=-+1=0,∴a=3.此时f(x)=2x3-3x2+1,f′(x)=6x(x-1),当x∈[-1,1]时,f(x)在[-1,0]上递增,在[0,1]上递减.又f(1)=0,f(-1)=-4,∴f(x)max+f(x)min=f(0)+f(-1)=1-4=-3.
相关试卷
这是一份艺术生高考数学专题讲义:考点14 导数与函数的极值、最值,共9页。试卷主要包含了函数的极值的定义,判断f是极大、极小值的方法,求可导函数f的极值的步骤,函数的最值,函数的极值与最值的区别与联系等内容,欢迎下载使用。
这是一份艺术生高考数学专题讲义:考点14 导数与函数的极值、最值,共9页。试卷主要包含了函数的极值的定义,判断f是极大、极小值的方法,求可导函数f的极值的步骤,函数的最值,函数的极值与最值的区别与联系等内容,欢迎下载使用。
这是一份(艺术生)高考数学一轮复习讲与练:考点14 导数与函数的极值、最值 (含解析),共9页。试卷主要包含了函数的极值的定义,判断f是极大、极小值的方法,求可导函数f的极值的步骤,函数的最值,函数的极值与最值的区别与联系等内容,欢迎下载使用。