初中数学北师大版九年级上册6 应用一元二次方程习题
展开
这是一份初中数学北师大版九年级上册6 应用一元二次方程习题,共8页。
2021-2022学年北师大版九年级数学上册《2.6应用一元二次方程》同步练习题1.新华商场销售某种冰箱,每台进货价为2500元.市场调研表明:当销售价为2900元时,平均每天能售出8台;而当销售价每降低50元时,平均每天就能多售出4台.商场要想使这种冰箱的销售利润平均每天达到5000元,设每台冰箱的降价x元,则x满足的关系式为( )A.(x﹣2500)(8+4×)=5000 B.(2900﹣x﹣2500)(8+4×)=5000 C.(x﹣2500)(8+4×)=5000 D.(2900﹣x)(8+4×)=50002.某航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了10条航线,则这个航空公司共有飞机场( )A.4个 B.5个 C.6个 D.7个3.一个小组有若干人,新年互送贺年卡一张,已知全组共送贺年卡72张,则这个小组有( )A.12人 B.18人 C.9人 D.10人4.学校组织一次乒乓球赛,要求每两队之间都要赛一场.若共赛了15场,则有几个球队参赛?设有x个球队参赛,则下列方程中正确的是( )A.x(x+1)=15 B. C.x(x﹣1)=15 D.5.某商店将进价为8元的商品按每件10元出售,每天可销售200件,现商家采用提高售价,减少进货量的方法增加利润,如果这种商品每件涨0.5元,其销量就会减少10件,那么要使利润为640元,需将售价定为( )A.16元 B.12元 C.16元或12元 D.14元6.某种植物的主干长出若干数目的枝干,每个枝干又长出同样数目的小分支,主干、枝干和小分支的总数是91.设每个枝干长出x个小分支,则x满足的关系式为( )A.x+x2=91 B.1+x2=91 C.1+x+x2=91 D.1+x(x﹣1)=91 7.某市2019年年底自然保护区覆盖率为8%,经过两年努力,该市2021年年底自然保护区覆盖率达到9%,求该市这两年自然保护区面积的平均增长率.设年均增长率为x,可列方程为( )A.9%(1﹣x)2=8% B.8%(1﹣x)2=9% C.9%(1+x)2=8% D.8%(1+x)2=9%8.秋冬季节为流感的高发期,有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染的人数为 .9.商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.(1)若某天该商品每件降价3元,当天可获利多少元?(2)设每件商品降价x元,则商场日销售量增加 件,每件商品,盈利 元(用含x的代数式表示);(3)在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元?10.如图,在宽为20米、长为30米的矩形地面上修建两条同样宽的道路,余下部分作为耕地.若耕地面积需要551米2,则修建的路宽应为多少米?11.如图,利用一面墙(墙长25米),用总长度49米的栅栏(图中实线部分)围成一个矩形围栏ABCD,且中间共留两个1米的小门,设栅栏BC长为x米.(1)AB= 米(用含x的代数式表示);(2)若矩形围栏ABCD面积为210平方米,求栅栏BC的长;(3)矩形围栏ABCD面积是否有可能达到240平方米?若有可能,求出相应x的值;若不可能,则说明理由. 12.阿里巴巴电商扶贫对某贫困地区一种特色农产品进行网上销售,按原价每件300元出售,一个月可卖出100件,通过市场调查发现,售价每件每降低10元,月销售件数增加20件.已知该农产品的成本是每件200元,在保持月利润不变的情况下,尽快销售完毕,则售价应定为多少元?13.商场购进某种新商品在试销期间发现,当每件利润为10元时,每天可销售70件;当每件商品每涨价1元,日销售量就减少1件,但每天的销售量不得低于35件.据此规律,请回答下列问题.(1)设每件涨了x元时,每件盈利 元,商品每天可销售 件;(2)在商品销售正常的情况下,每件商品涨价多少元时,商场每天盈利可达到1500元;(3)若商场的每天盈利能达到最大.请直接写出每天的最大盈利为 元.14.某水果商店销售一种进价为40元/千克的优质水果,若售价为50元/千克,则一个月可售出500千克;若售价在50元/千克的基础上每涨价1元,则月销售量就减少10千克.(1)当月利润为8000元时,每千克水果售价为多少元?(2)当每千克水果售价为多少元时,获得的月利润最大?月利润的最大值是多少?15.平安路上,多“盔”有你,在“交通安全宣传月”期间,某商店销售一批头盔,进价为每顶80元,售价为每顶120元,平均每周可售出200顶.商店计划将头盔降价销售,每顶售价不高于108元,经调查发现:每降价1元,平均每周可多售出20顶.(1)该商店若希望每周获利12000元,则每顶头盔应降价多少元?(2)当每顶头盔的售价为多少元,商店每月获得最大利润,最大利润是多少?16.某种电脑病毒在网络中传播得非常快,如果有一台电脑被感染,经过两轮传播后共有144台电脑被感染(假定感染病毒的电脑没有及时得到查毒、杀毒处理)(1)求每轮感染中平均一台电脑感染几台电脑?(2)如果按照这样的感染速度,经过三轮感染后被感染的电脑总数会不会超过1700台?17.有一个人患了流感,经过两轮传染后共有81人患了流感.(1)试求每轮传染中平均一个人传染了几个人?(2)如果按照这样的传染速度,经过三轮传染后共有多少个人会患流感?18.随着阿里巴巴、淘宝网、京东、小米等互联网巨头的崛起,催生了快递行业的高速发展.据调查,杭州市某家小型快递公司,今年一月份与三月份完成投递的快递总件数分别为10万件和12.1万件.现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递快递总件数的月平均增长率;(2)如果平均每人每月最多可投递快递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年4月份的快递投递任务?如果不能,请问至少需要增加几名业务员?19.物美商场于今年年初以每件25元的进价购进一批商品.当商品售价为40元时,一月份销售256件.二、三月该商品十分畅销.销售量持续走高.在售价不变的基础上,三月底的销售量达到400件.设二、三这两个月月平均增长率不变.(1)求二、三这两个月的月平均增长率;(2)从四月份起,商场决定采用降价促销的方式回馈顾客,经调查发现,该商品每降价1元,销售量增加5件,当商品降价多少元时,商场获利4250元?20.一家水果店以每斤3元的价格购进“官地洼”甜瓜若干斤,然后以每斤5元的价格出售,每天可售出100斤,通过调查发现,这种甜瓜每斤的售价每降低0.1元,每天可多售出20斤.(1)若将“官地洼”甜瓜每斤的售价降低x元,则每天的销售量是多少斤(用含x的代数式表示);(2)销售这批“官地洼”甜瓜要想每天盈利300元,且保证每天至少售出280斤,那么水果店需将每斤的售价降低多少元?
参考答案1.解:设每台冰箱的降价x元,依题意得(2900﹣x﹣2500)(8+4×)=5000.故选:B.2.解:设这个航空公司有机场n个=10n=5或n=﹣4(舍去)故选:B.3.解:设这个小组有n人×2=72n=9或n=﹣8(舍去)故选:C.4.解:设有x个球队参加比赛,依题意得1+2+3+…+x﹣1=15,即 =15.故选:D.5.解:设售价为x元,根据题意列方程得(x﹣8)(200﹣×10)=640,整理得:x2﹣28x+192=0,解得x1=12,x2=16.故将每件售价定为12或16元时,才能使每天利润为640元.又题意要求采取提高商品售价减少销售量的办法增加利润,故应将商品的售价定为16元.故选:A.6.解:设每个枝干长出x个小分支,则主干上长出了x个枝干,根据题意得:x2+x+1=91.故选:C.7.解:设该市总面积为1,该市这两年自然保护区的年均增长率为x,根据题意得1×8%×(1+x)2=1×9%,即8%(1+x)2=9%.故选:D.8.解:设每轮传染中平均一个人传染的人数为x人,依题意得:(1+x)2=121,解得:x1=10,x2=﹣12(不合题意,舍去).故答案为:10人.9.解:(1)当天盈利:(50﹣3)×(30+2×3)=1692(元).答:若某天该商品每件降价3元,当天可获利1692元.(2)∵每件商品每降价1元,商场平均每天可多售出2件,∴设每件商品降价x元,则商场日销售量增加2x件,每件商品盈利(50﹣x)元.故答案为:2x;(50﹣x).(3)根据题意,得:(50﹣x)(30+2x)=2000,整理,得:x2﹣35x+250=0,解得:x1=10,x2=25,∵商城要尽快减少库存,∴x=25.答:每件商品降价25元时,商场日盈利可达到2000元.10.解:设修建的路宽为x米.则列方程为20×30﹣(30x+20x﹣x2)=551,解得x1=49(舍去),x2=1.答:修建的道路宽为1米.11.解:(1)设栅栏BC长为x米,∵栅栏的全长为49米,且中间共留两个1米的小门,∴AB=49+2﹣3x=51﹣3x(米),故答案为:(51﹣3x);(2)依题意,得:(51﹣3x)x=210,整理,得:x2﹣17x+70=0,解得:x1=7,x2=10.当x=7时,AB=51﹣3x=30>25,不合题意,舍去,当x=10时,AB=51﹣3x=21,符合题意,答:栅栏BC的长为10米;(3)不可能,理由如下:依题意,得:(51﹣3x)x=240,整理得:x2﹣17x+80=0,∵Δ=(﹣17)2﹣4×1×80=﹣31<0,∴方程没有实数根,∴矩形围栏ABCD面积不可能达到240平方米.12.解:设售价应定为x元,则每件的利润为(x﹣200)元,月销售量为100+=(700﹣2x)件,依题意,得:(x﹣200)(700﹣2x)=(300﹣200)×100,整理,得:x2﹣550x+75000=0,解得:x1=250,x2=300(舍去).答:售价应定为250元.13.解:(1)设每件涨了x元时,每件盈利(10+x)元,商品每天可销售(70﹣x)件;(2)根据题意得:(10+x)(70﹣x)=1500,解得:x=20或x=40(不合题意,舍去),答:每件商品涨20元时商场每天盈利可达1500元.(3)设总利润为w元,则w=(10+x)(70﹣x)=﹣(x﹣30)2+1600,∴总利润的最大值为1600元.14.解:(1)设每千克水果售价为x元,则每千克的销售利润为(x﹣40)元,月销售量为500﹣10(x﹣50)=(1000﹣10x)千克,依题意得:(x﹣40)(1000﹣10x)=8000,整理得:x2﹣140x+4800=0,解得:x1=60,x2=80.答:每千克水果售价为60元或80元.(2)设每千克水果售价为x元,获得的月利润为w元,则每千克的销售利润为(x﹣40)元,月销售量为(1000﹣10x)千克,依题意得:w=(x﹣40)(1000﹣10x)=﹣10x2+1400x﹣40000=﹣10(x﹣70)2+9000.∵﹣10<0,∴当x=70时,w取得最大值,最大值为9000.答:当每千克水果售价为70元时,获得的月利润最大,月利润的最大值是9000元.15.解:(1)设每顶头盔降价a元,则平均每周可售出(20a+200)顶,由题意得:(120﹣a﹣80)(20a+200)=12000,解得a=10或a=20,当a=10时,售价为120﹣10=110>108,不符题意,舍去,当a=20时,售价为120﹣20=100<108,符合题意,答:每顶头盔应降价20元;(2)设商店每周获得最大利润w元,每顶头盔的售价为x元,则平均每周可售出[20(120﹣x)+200]顶,且80≤x≤108,由题意得:w=[20(120﹣x)+200](x﹣80),整理得:w=﹣20(x﹣105)2+12500,由二次函数的性质可知,在80≤x≤108内,当x=105时,w取最大值12500,答:当每顶头盔的售价为105元,商店每周获得最大利润,最大利润是12500元.16.解:(1)设每轮感染中平均每一台电脑会感染x台电脑,依题意得:1+x+(1+x)x=144,整理得(1+x)2=144,则x+1=12或x+1=﹣12,解得x1=11,x2=﹣13(舍去),答:每轮感染中平均一台电脑感染11台电脑;(2)由(1)得:(1+x)2+x(1+x)2=(1+x)3=(1+11)3=1728>1700.答:3轮感染后,被感染的电脑会超过1700台.17.解:(1)设每轮传染中平均一个人传染x个人,根据题意得:1+x+x(x+1)=81,整理,得:x2+2x﹣80=0,解得:x1=8,x2=﹣10(不合题意,舍去).答:每轮传染中平均一个人传染8个人.(2)81+81×8=729(人).答:经过三轮传染后共有729人会患流感.18.(1)解:设该快递公司投递快递总件数的月平均增长率为x,由题意,得10×(1+x)2=12.1,解得:x1=10%,x2=﹣210%.答:该快递公司投递快递总件数的月平均增长率为10%.(2)4月:12.1×1.1=13.31(万件)21×0.6=12.6<13.31,∴该公司现有的21名快递投递业务员不能完成今年4月份的快递投递任务.∵22<<23,∴至少还需增加2名业务员.19.解:(1)设二、三这两个月的月平均增长率为x,根据题意可得:256(1+x)2=400,解得:x1=,x2=﹣(不合题意舍去).答:二、三这两个月的月平均增长率为25%;(2)设当商品降价m元时,商品获利4250元,根据题意可得:(40﹣25﹣m)(400+5m)=4250,解得:m1=5,m2=﹣70(不合题意舍去).答:当商品降价5元时,商品获利4250元.20.解:(1)100+×20=100+200x(斤).答:每天的销售量是(100+200x)斤.(2)依题意得:(5﹣3﹣x)(100+200x)=300,整理得:2x2﹣3x+1=0,解得:x1=,x2=1.当x=时,100+200x=100+200×=200<280,不合题意,舍去;当x=1时,100+200x=100+200×1=300>280,符合题意.∴x=1.答:水果店需将每斤的售价降低1元
相关试卷
这是一份北师大版九年级上册6 应用一元二次方程课后复习题,共33页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份数学北师大版6 应用一元二次方程习题,共7页。试卷主要包含了单选题,解答题等内容,欢迎下载使用。
这是一份2021学年6 应用一元二次方程课后测评,共6页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。