初中数学苏科版九年级上册2.5 直线与圆的位置关系课堂检测
展开
这是一份初中数学苏科版九年级上册2.5 直线与圆的位置关系课堂检测,共21页。
2021-2022学年苏科版九年级数学上册2.5直线与圆的位置关系常考热点优生辅导训练
1.如图,△ABC中,∠A=80°,点O是△ABC的内心,则∠BOC的度数为( )
A.100° B.160° C.80° D.130°
2.已知⊙O的直径为4,点O到直线l的距离为2,则直线l与⊙O的位置关系是( )
A.相交 B.相切 C.相离 D.无法判断
3.如图,AB为⊙O的直径,点C为⊙O上的一点,过点C作⊙O的切线,交直径AB的延长线于点D;若∠A=23°,则∠D的度数是( )
A.23° B.44° C.46° D.57°
4.如图,在平面直角坐标系xOy中,直线AB过点A(﹣3,0),B(0,3),⊙O的半径为1(O为坐标原点),点P在直线AB上,过点P作⊙O的一条切线PQ,Q为切点,则切线长PQ的最小值为( )
A. B.2 C.3 D.
5.如图,△ABC中,AB=AC,∠A=40°,延长AC到D,使CD=BC,点P是△ABD的内心,则∠BPC=( )
A.105° B.110° C.130° D.145°
6.如图平面直角坐标系中,点P在第一象限,⊙P与x轴、y轴都相切,且经过矩形AOBC的顶点C,与BC相交于点D.若⊙P的半径为5,点A的坐标是(0,8).则点D( )
A.(9,2) B.(9,3) C.(10,2) D.(10,3)
7.如图,已知AD是∠BAC的平分线,以线段AB为直径作圆,交∠BAC和角平分线于C,D两点.过D向AC作垂线DE垂足为点E.若DE=2CE=4,则直径AB= .
8.如图,在△ABC中,AC=BC,以AB上一点O为圆心,OA为半径的圆与BC相切于点C,若BC=4,则⊙O的半径为 .
9.如图,PA、PB分别切圆O于A、B,并与圆O的切线,分别相交于C、D,已知△PCD的周长等于10cm,则PA= cm.
10.如图,PA,PB是⊙O的切线,A,B为切点,AC是⊙O的直径,∠BAC=15°,则∠P的度数为 .
11.如图,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG的长为 .
12.如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O相切于E,F,G三点,过点D作⊙O的切线交BC于点M,切点为N,则DM的长为 .
13.已知△ABC的三边a、b、c满足b+|c﹣3|+a2﹣8a=4﹣19,则△ABC的内切圆半径= .
14.如图,直线a⊥b,垂足为H,点P在直线b上,PH=4cm,O为直线b上一动点,若以1cm为半径的⊙O与直线a相切,则OP的长为 .
15.如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=4,⊙O的半径为2,点P是AB边上的动点,过点P作⊙O的一条切线PC(点C为切点),则线段PC长的最小值为 .
16.如图,直线l与x轴、y轴分别交于点A、B,且OB=4,∠ABO=30°,一个半径为1的⊙C,圆心C从点(0,1)开始沿y轴向下运动,当⊙C与直线l相切时,⊙C运动的距离是
17.如图,在平面直角坐标系中,已知C(3,4),以点C为圆心的圆与y轴相切.点A、B在x轴上,且OA=OB.点P为⊙C上的动点,∠APB=90°,则AB长度的最大值为 .
18.如图,AC是⊙O的直径,OD与⊙O相交于点B,∠DAB=∠ACB.
(1)求证:AD是⊙O的切线.
(2)若∠ADB=30°,DB=2,求直径AC的长度.
19.已知,AB是⊙O的直径,EF与⊙O相切于点D,EF∥AB,点C在⊙O上,且C,D两点位于AB异侧,AC<BC,连接CD.
(1)如图1,求证:CD平分∠ACB;
(2)如图2,若AC=6,CD=,作AM⊥CD于点M,连接OM,求线段OM的长.
20.如图,⊙O与△ABC的AC边相切于点C,与BC边交于点E,⊙O过AB上一点D,且DE∥AO,CE是⊙O的直径.
(1)求证:AB是⊙O的切线;
(2)若BD=4,EC=6,求AC的长.
21.如图,AB是⊙O的直径,点D、E在⊙O上,连接AE、ED、DA,连接BD并延长至点C,使得∠DAC=∠AED.
(1)求证:AC是⊙O的切线;
(2)若点E是的中点,AE与BC交于点F,
①求证:CA=CF;
②若⊙O的半径为3,BF=2,求AC的长.
22.如图,在△ABC中,∠C=90°,∠ABC的平分线BE交AC于点E,过点E作直线
BE的垂线交AB于点F,⊙O是△BEF的外接圆.
(1)求证:AC是⊙O的切线;
(2)过点E作EH⊥AB于点H,求证:EF平分∠AEH;
(3)求证:CD=HF.
23.已知:如图,△ABC中,AC=BC,以BC为直径的⊙O交AB于点D,过点D作DE⊥AC于点E,交BC的延长线于点F.
求证:(1)AD=BD;
(2)DF是⊙O的切线.
参考答案
1.解:∵∠A=80°,
∴∠ABC+∠ACB=180°﹣∠A=100°,
∵点O是△ABC的内心,
∴∠OBC+∠OCB=(∠ABC+∠ACB)=50°,
∴∠BOC=180°﹣50°=130°.
故选:D.
2.解:∵⊙O的直径为4,
∴⊙O的半径为2,
∵点O到直线l的距离为2,
∴d=r
∴l与⊙O的位置关系相切.
故选:B.
3.解:连接OC,如图,
∵CD为⊙O的切线,
∴OC⊥CD,
∴∠OCD=90°,
∵∠COD=2∠A=46°,
∴∠D=90°﹣46°=44°.
故选:B.
4.解:连接OP、OQ.
∵PQ是⊙O的切线,
∴OQ⊥PQ;
根据勾股定理知PQ2=OP2﹣OQ2,
∵当PO⊥AB时,线段PQ最短;
又∵A(﹣3,0),B(0,3),
∴OA=OB=3,
∴AB==6,
∴OP=AB=3,
∴PQ==2.
故选:B.
5.解:如图,连接AP并延长交BC于E,
∵AB=AC,
∴∠ABC=∠ACB=(180°﹣∠A)=(180°﹣40°)=70°,
∵CD=CB,
∴∠D=∠CBD,
而∠ACB=∠D+∠CBD,
∴∠CBD=∠ACB=35°,
∴∠ABD=35°+70°=105°,
∵点P是△ABD的内心,
∴AP平分∠BAC,BP平分∠ABD,
∴AE垂直平分BC,∠PBD=∠ABD=52.5°,
∴∠PBC=52.5°﹣35°=17.5°,
∵PE垂直平分BC,
∴PB=PC,
∴∠PBC=∠PCB=17.5°,
∴∠BPC=180°﹣17.5°﹣17.5°=145°.
故选:D.
6.解:设⊙O与x、y轴相切的切点分别是F、E点,连接PE、PF、PD,延长EP与CD交于点G,
则PE⊥y轴,PF⊥x轴,
∵∠EOF=90°,
∴四边形PEOF是矩形,
∵PE=PF,PE∥OF,
∴四边形PEOF为正方形,
∴OE=PF=PE=OF=5,
∵A(0,8),
∴OA=8,
∴AE=8﹣5=3,
∵四边形OACB为矩形,
∴BC=OA=8,BC∥OA,AC∥OB,
∴EG∥AC,
∴四边形AEGC为平行四边形,四边形OEGB为平行四边形,
∴CG=AE=3,EG=OB,
∵PE⊥AO,AO∥CB,
∴PG⊥CD,
∴CD=2CG=6,
∴DB=BC﹣CD=8﹣6=2,
∵PD=5,DG=CG=3,
∴PG=4,
∴OB=EG=5+4=9,
∴D(9,2).
故选:A.
7.解:连接CD,BD,OD,过点D作DP⊥AB于点P,
∵DE⊥AC,DE=2CE=4,
∴CE=2,
∴CD==2,
∵AD是∠BAC的平分线,DP⊥AB,DE⊥AC,
∴∠BAD=∠DAC,DP=DE=4,
∴BD=CD=2,
∴PB==2,
在Rt△ODP中,设OD=r,则OP=r﹣2,
∴r2=(r﹣2)2+42,解得:r=5,
∴AB=2r=10.
故答案为:10.
8.解:连接CO,
∵OA为半径的圆与BC相切于点C,
∴∠BCO=90°,
∵AC=BC,
∴∠B=∠A,
∵OA=CO,
∴∠A=∠OCA,
∴∠B=∠A=∠OCA,
∵∠B+∠A+∠OCA=90°,
∴∠B=∠A=∠OCA=30°,
∴BO=2CO,
设CO=x,则BO=2x,
故x2+(4)2=(2x)2,
解得:x=4,
则⊙O的半径为:4.
故答案为:4.
9.解:如图,设DC与⊙O的切点为E;
∵PA、PB分别是⊙O的切线,且切点为A、B;
∴PA=PB;
同理,可得:DE=DA,CE=CB;
则△PCD的周长=PD+DE+CE+PC=PD+DA+PC+CB=PA+PB=10(cm);
∴PA=PB=5cm,
故答案为:5.
10.解:∵PA为切线,
∴OA⊥PA,
∴∠CAP=90°,
∴∠PAB=90°﹣∠BAC=90°﹣15°=75°,
∵PA,PB是⊙O的切线,
∴PA=PB,
∴∠PBA=∠PAB=75°,
∴∠P=180°﹣75°﹣75°=30°.
故答案为30°.
11.解:连接OD,BD,作DH⊥FG于H,DM⊥BC于M,如图,
∵△ABC为等边三角形,
∴∠A=∠C=∠ABC=60°,AC=BC,
∵DF是圆的切线,
∴OD⊥DF,
∵△ODC为等边三角形,
∴∠ODC=60°,
∴∠A=∠ODC,
∴OD∥AB,
∴DF⊥AB,
在Rt△ADF中,AF=2,∠A=60°,
∴AD=4,DF=AF=2,
∵BC为⊙O的直径,
∴∠BDC=90°,
∴BD⊥AC,
∴AD=CD=4,
∴OD=4,
∴OM=OD=2,
在Rt△DFH中,∠DFH=60°,DF=2,
∴FH=,DH=FH=3,
∴GM=3,
∴OG=GM﹣OM=1,
∴BG=OB﹣OG=3,
在Rt△BGF中,∠FBG=60°,BG=3,
∴FG=BG=3.
故答案为3.
12.解:连接OE,OF,ON,OG,
在矩形ABCD中,
∵∠A=∠B=90°,CD=AB=4,
∵AD,AB,BC分别与⊙O相切于E,F,G三点,
∴∠AEO=∠AFO=∠OFB=∠BGO=90°,
∴四边形AFOE,FBGO是正方形,
∴AF=BF=AE=BG=2,
∴DE=3,
∵DM是⊙O的切线,
∴DN=DE=3,MN=MG,
∴CM=5﹣2﹣MN=3﹣MN,
在Rt△DMC中,DM2=CD2+CM2,
∴(3+NM)2=(3﹣NM)2+42,
∴NM=,
∴DM=3+=.
故答案为.
13.解:∵b+|c﹣3|+a2﹣8a=4﹣19,
∴|c﹣3|+(a﹣4)2+()2=0,
∴c=3,a=4,b=5,
∵32+42=25=52,
∴c2+a2=b2,
∴△ABC是直角三角形,∠ABC=90°,
设内切圆的半径为r,
根据题意,得S△ABC=×3×4=×3×r+×4×r+×r×5,
∴r=1,
故答案为:1.
14.解:∵直线a⊥b,O为直线b上一动点,
∴⊙O与直线a相切时,切点为H,
∴OH=1cm,
当点O在点H的左侧,⊙O与直线a相切时,如图1所示:
OP=PH﹣OH=4﹣1=3(cm);
当点O在点H的右侧,⊙O与直线a相切时,如图2所示:
OP=PH+OH=4+1=5(cm);
∴⊙O与直线a相切,OP的长为3cm或5cm,
故答案为:3cm或5cm.
15.解:连接OP、OC,如图所示,
∵PC是⊙O的切线,
∴OC⊥PC,
根据勾股定理知:PC2=OP2﹣OC2,
∴当PO⊥AB时,线段PC最短,
∵在Rt△AOB中,OA=3,OB=4,
∴AB=5,
∴S△AOB=OA•OB=AB•OP,即OP==,
∵OC=2,
∴PC===,
故答案为:.
16.解:设第一次相切的切点为E,第二次相切的切点为F,连接EC′,FC″,
在Rt△BEC′中,∠ABC=30°,EC′=1,
∴BC′=2EC′=2,
∵BC=5,
∴CC′=3,同法可得CC″=7,
故答案为3或7.
17.解:连接OC并延长,交⊙C上一点P,以O为圆心,以OP为半径作⊙O,交x轴于A、B,此时AB的长度最大,
∵C(3,4),
∴OC==5,
∵以点C为圆心的圆与y轴相切.
∴⊙C的半径为3,
∴OP=OA=OB=8,
∵AB是直径,
∴∠APB=90°,
∴AB长度的最大值为16,
故答案为16.
18.(1)证明:∵AC是⊙O的直径,
∴∠ABC=90°,
∴∠ACB+∠CAB=90°,
又∵∠ACB=∠DAB,
∴∠DAB+∠CAB=90°,即∠OAD=90°,
∵OA是⊙O的半径,
∴AD是⊙O的切线;
(2)解:由(1)可知∠OAD=90°,
∵∠ADB=30°,
∴OA=OD=(OB+BD),
∵OA=OB,BD=2,
∴OA=2,
∴AC=2OA=4.
19.(1)证明:连接OD,
∵EF与⊙O相切于点D,
∴∠EDO=90°,
又∵EF∥AB,
∴∠BOD=∠AOD=∠EDO=90°,
又∵∠ACD=∠AOD,∠DCB=∠DOB,
∴∠ACD=∠DCB,
∴CD平分∠ACB;
(2)解:连接AD,作ON⊥CD于N,
∵AM⊥CD,
∴∠AMD=∠DOA=90°,
取AD的中点H,连接OH,MH,
则AH=DH=OH=MH=AD,
∴A,D,O,M四点都在⊙H上,
∴∠OMD=∠OAD=45°,
又∵ON⊥CD,
∴△MNO是等腰直角三角形,
又∵AB是直径,
∴∠ACB=90°,
又∵CD平分∠ACB,AM⊥CD,
∴△AMC是等腰直角三角形,
又∵AC=6,
∴AM=CM=3,
∴DM=CD﹣CM=7﹣3=4,
∴在Rt△AMD中可得AD=5,
∴在等腰Rt△AOD中可得DO=5,
设MN=ON=x,则DN=4﹣x,
在Rt△OMD中ON2+DN2=DO2,
∴x2+(4﹣x)2=52 ,
∴ x=或 x=,
又∵x<5,
∴ x=,
∴OM=x=1.
20.(1)证明:连接OD,
∵OD=OE,
∴∠OED=∠ODE,
∵DE∥OA,
∴∠ODE=∠AOD,∠DEO=∠AOC,
∴∠AOD=∠AOC,
∵AC是切线,
∴∠ACB=90°,
在△AOD和△AOC中
,
∴△AOD≌△AOC(SAS),
∴∠ADO=∠ACB=90°,
∵OD是半径,
∴AB是⊙O的切线;
(2)解:∵AB是⊙O的切线,
∴∠BDO=90°,
∴BD2+OD2=OB2,
∴42+32=(3+BE)2,
∴BE=2,
∴BC=BE+EC=8,
∵AD,AC是⊙O的切线,
∴AD=AC,
设AD=AC=x,
在Rt△ABC中,AB2=AC2+BC2,
∴(4+x)2=x2+82,
解得:x=6,
∴AC=6.
21.(1)证明:∵AB是⊙O的直径,
∴∠ADB=90°,
∴∠DBA+∠DAB=90°,
∵∠DEA=∠DBA,∠DAC=∠DEA,
∴∠DBA=∠DAC,
∴∠DAC+∠DAB=90°,
∵AB是⊙O的直径,∠CAB=90°,
∴AC是⊙O的切线;
(2)①证明:∵点E是的中点,
∴∠BAE=∠DAE,
∵∠CFA=∠DBA+∠BAE,∠CAF=∠DAC+∠DAE,∠DBA=∠DAC,
∴∠CFA=∠CAF,
∴CA=CF;
②解:设CA=CF=x,
则BC=CF+BF=x+2,
∵⊙O的半径为3,
∴AB=6,
在Rt△ABC中,CA2+AB2=BC2,
即:x2+62=(x+2)2,
解得:x=8,
∴AC=8.
22.(1)证明:如图,连接OE.
∵BE⊥EF,∴∠BEF=90°,
∴BF是圆O的直径,
∴OB=OE,
∴∠OBE=∠OEB,
∵BE平分∠ABC,
∴∠CBE=∠OBE,
∴∠OEB=∠CBE,
∴OE∥BC,
∴∠AEO=∠C=90°,
∴AC是⊙O的切线;
(2)证明:∵∠C=∠BHE=90°,∠EBC=∠EBA,
∴BEC=∠BEH,
∵BF是⊙O是直径,
∴∠BEF=90°,
∴∠FEH+∠BEH=90°,∠AEF+∠BEC=90°,
∴∠FEH=∠FEA,
∴FE平分∠AEH.
(3)证明:如图,连接DE.
∵BE是∠ABC的平分线,EC⊥BC于C,EH⊥AB于H,
∴EC=EH.
∵∠CDE+∠BDE=180°,∠HFE+∠BDE=180°,
∴∠CDE=∠HFE,
∵∠C=∠EHF=90°,
∴△CDE≌△HFE(AAS),
∴CD=HF,
23.证明:(1)连接CD,
∵BC为⊙O的直径,
∴CD⊥AB.
∵AC=BC,
∴AD=BD.
(2)连接OD;
∵AD=BD,OB=OC,
∴OD是△BCA的中位线,
∴OD∥AC.
∵DE⊥AC,
∴DF⊥OD.
∵OD为半径,
∴DF是⊙O的切线.
相关试卷
这是一份苏科版2.4 圆周角同步练习题,共23页。试卷主要包含了已知AB是⊙O的直径等内容,欢迎下载使用。
这是一份初中数学苏科版九年级上册2.7 弧长及扇形的面积课时训练,共21页。试卷主要包含了如图,已知等内容,欢迎下载使用。
这是一份苏科版九年级上册2.5 直线与圆的位置关系当堂检测题,共28页。