![安徽省2022届高三上学期第一次联考 文科数学 (含答案) 练习题第1页](http://img-preview.51jiaoxi.com/3/3/12200786/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![安徽省2022届高三上学期第一次联考 文科数学 (含答案) 练习题第2页](http://img-preview.51jiaoxi.com/3/3/12200786/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![安徽省2022届高三上学期第一次联考 文科数学 (含答案) 练习题第3页](http://img-preview.51jiaoxi.com/3/3/12200786/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
安徽省2022届高三上学期第一次联考 文科数学 (含答案) 练习题
展开
这是一份安徽省2022届高三上学期第一次联考 文科数学 (含答案) 练习题,共13页。
江淮十校2022届高三第一次联考 数学(文科) 2021.8注意事项:1.本试卷满分150分,考试时间120分钟。2.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。3.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。4.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.复数在复平面上对应的点在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限2.已知集合,,则等于( )A. B. C. D.3.已知双曲线C:,则该双曲线的离心率为( )A. B. C.2 D.44.“”是“直线与直线平行”的( )A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件5.设函数,若,则( )A. B. C.1 D.26.已知两个等比数列,的前n项积分别为,,若,则( )A.3 B.27 C.81 D.2437.已知函数,,某函数的部分图象如图所示,则该函数可能是( )A. B.C. D.8.将函数图象上各点的横坐标缩短到原来的倍(纵坐标不变),再把得到的曲线向左平移个单位长度,得到函数的图象,则图象的一条对称轴方程是( )A. B. C. D.9.一个四面体的三视图如图所示,则该四面体的表面积为( )A. B. C. D.10.我国古代以天为主,以地为从,天和干相连叫天干,地和支相连叫地支,合起来叫天干地支.天干有十个,就是甲、乙、丙、丁、戊、己、庚、辛、壬、癸,地支有十二个,依次是子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.古人把它们按照甲子、乙丑、丙寅……的顺序而不重复地搭配起来,从甲子到癸亥共六十对,叫做一甲子.我国古人用这六十对干支来表示年、月、日、时的序号,周而复始,不断循环,这就是干支纪年法(即农历).干支纪年历法,是屹立于世界民族之林的科学历法之一.今年(2021年)是辛丑年,也是伟大的中国共产党成立100周年,则中国共产党成立的那一年是( )A.辛酉年 B.辛戊年 C.壬酉年 D.壬戊年11.的内角A,B,C的对边分别为a,b,c,若,,则面积的最大值为( )A. B. C.1 D.212.若,恒成立,则a的最大值为( )A. B.1 C. e D.二、填空题:本题共4小题,每小题5分,共20分.13.若x,y满足约束条件,则的最大值为____________.14.在中,已知点D满足,若,则____________.15.已知点P为抛物线C:上的动点,过点P作圆M:的一条切线,切点为A,则的最小值为____________.16.已知正方体的棱长等于1,点为P底面的四条棱上的动点,则的取值范围为____________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知函数.(1)求的单调递减区间;(2)设锐角内角A,B,C的对边分别为a,b,c,已知,,求b的取值范围.18.(12分)为了讴歌中华民族实现伟大复兴的奋斗历程,增进学生对党史的了解,某班级开展党史知识竞赛活动,现把50名学生的成绩绘制了如图所示的频率分布直方图.(1)求a的值并估计这50名学生的平均成绩(同一组中的数据用该组区间的中点值为代表);(2)用分层抽样的方法从成绩在,两组学生中抽取5人进行培训,再从这5人中随机抽取2人参加校级党史知识竞赛,求这2人来自不同小组的概率.19.(12分)已知数列的前n项和为,满足,(t为常数).(1)求的通项公式;(2)若,求数列的前n项和为.20.(12分)如图,在四棱锥中,,.(1)在棱上是否存在点E,使得平面?说明理由;(2)若平面平面,,,求点A到平面的距离.21.(12分)书籍椭圆E:()的焦点为,,且点在E上.(1)求E的方程;(2)已知过定点的动直线l交E于A,B两点,线段的中点为N,若为定值,试求m的值.22.(12分)已知函数.(1)讨论的单调性;(2)若,关于x的方程有唯一解,求a的值.江淮十校2022届高三第一次联考数学(文科)试题参考答案与评分细则一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.题号123456789101112选项ABCCDDCBBAAC1.A 解:,在复平面上对应的点的坐标为.2.B 解:∵,∴,∵,∴,∴.3.C 解:由已知易得.4.C 解:当两直线平行,∴,解得或,当,两直线重合,舍去;当时,两直线平行.所以“”是“直线与直线平行”的充要条件.5.D 解:,则,得,解得.6.D 解:,故选D.7.C 解:对于A,为非奇非偶函数,与函数图象不符,排除A;对于B,为非奇非偶函数,与函数图象不符,排除B;对于D,,当时,,与图象不符,排除D.故选C.8.B 解:依题意可知,,令,,解得,.所以时,.9.B 解:如图,在棱长等于的正方体上取四面体即为所求四面体,易得该四面体的表面积为.10.A 解:中题意知,天干是公差为10的等差数列,地支为公差为12的等差数列,且,,因为2021年为辛丑年,则100年前的天干为“辛”,地支为“酉”,可得到1921年为辛西年.11.A 解:当且仅当时取等号,∴,∴,则.12.C 解:因为,,因为,①若,,此时满足;②若,令,在恒成立,所以在单调递增,在恒成立,综上可得在恒成立,,令,,在单调递减,单调递增,所以,所以.二、填空题:本题共4小题,每小题5分,共20分.13.5解:在取得最大值5.14.解:因为,所以.15.解:由已知易得,设点,则,当时,取得最小值.16.解:不妨令点P在棱上,设,则,由勾股定理可得,其几何意义为x轴上一动点()到两定点与的距离之和.其最小值即为到的距离,即.又由平面几何知识知,当的最大值在或处取得,当时,;当时,.故的取值范围为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.解:(1) ··································································2分令得() ···································································4分∴的单调递减区间为() ·······················································5分(2)由得,∵,∴,∴ ··································································7分由正弦定理得,,∵,∴b的取值范围为 ···········································10分18.解:(1)根据频率分布直方图得:,解得 ·······································································3分估计平均成绩为: ··········································································6分(2)来自小组的有3人记为,,,来自小组的有2人记为,,从5人中随机抽取2人,基本事件为:,,,,,,,,,.来自不同组的有,,,,,, ····················································9分所以概率为. ································································12分19.解:(1)令,,可得,所以时,,可得所以(),又因为满足上式,所以 ················································6分(2)解法一:因为所以 ······································································12分解法二:①n为偶数②n为奇数所以 ······································································12分20.解:(1)存在的中点E,使得平面, ··············································1分证明如下:分别取,的中点E,F,连接,,,则,又∵,∴,∵,,∴,∴四边形为平行四边形,∴,又∵平面,平面,∴平面. ·······················································5分(2)取的中点O,连接,,∴,∴,又∵平面平面,平面平面,平面,∴平面, ······························································7分设点A到平面的距离为d,则,∴.∵平面,∴,,,∴,易知,∴,,,∴,,∴,∴,即点A到平面的距离为. ························································12分21.解:(1)易知,∴,而,∴,∴椭圆E的方程为. ·························································4分(2)①若直线l的斜率不存在,易得, ·············································5分②若直线l的斜率存在,设其方程为,,,则,联立得,且,, ·····································································7分 ··········································································8分 ··········································································10分要使上式为常数,必须且只需,即,此时易知恒成立,且,符合题意. ················································11分综上所述,. ································································12分22.解:(1)由题意,可得且①若,恒成立,则在上是增函数②,则所以当时,,当时,则在上是减函数,在上是增函数综上所述,若,在上是增函数若,在上是减函数,在上是增函数 ················································5分(2)中题意,可得令,方程有唯一解,即有唯一零点;,令,得.因为,,所以(舍去),.当时,,在是减函数;当时,,在上是增函数.当时,,.若,则恒成立,不存在零点(舍) ················································7分若则,即,可得设,因为在时,是减函数,所以至多有一解.又因为,所以,从而解得. ·······················································9分若,则,可得因为,所以在存在一个零点;又因为所以在存在一个零点;因此存在两个零点(舍). ······················································11分综上所述,. ································································12分 欢迎访问“高中试卷网”——http://sj.fjjy.org
相关试卷
这是一份2023天一大联考顶尖计划高三上学期第一次联考文科数学试题含答案,共8页。试卷主要包含了 已知集合,则中的元素个数为, 已知复数, 则, 已知非零向量满足,且,则, 设数列满足且,则, 已知函数在处取得最大值,则等内容,欢迎下载使用。
这是一份2022安徽省江淮十校高三上学期第一次联考文科数学试题含答案,共13页。试卷主要包含了设函数,若,则等内容,欢迎下载使用。
这是一份2022安徽省江淮十校高三上学期第一次联考文科数学试题含答案,共13页。试卷主要包含了设函数,若,则等内容,欢迎下载使用。