北师大版必修21.3两条直线的位置关系同步测试题
展开2019-2020学年北师大版必修二 两条直线的位置关系 课时作业
1.(2019·石家庄模拟)已知点P(3,2)与点Q(1,4)关于直线l对称,则直线l的方程为( )
A.x-y+1=0 B.x-y=0
C.x+y+1=0 D.x+y=0
解析:选A.由题意知直线l与直线PQ垂直,直线PQ的斜率kPQ=-1,所以直线l的斜率k=-=1.又直线l经过PQ的中点(2,3),所以直线l的方程为y-3=x-2,即x-y+1=0.
2.已知过点A(-2,m)和点B(m,4)的直线为l1,直线2x+y-1=0为l2,直线x+ny+1=0为l3.若l1∥l2,l2⊥l3,则实数m+n的值为( )
A.-10 B.-2
C.0 D.8
解析:选A.因为l1∥l2,所以kAB==-2.
解得m=-8.
又因为l2⊥l3,所以-×(-2)=-1,
解得n=-2,所以m+n=-10.
3.已知点A(5,-1),B(m,m),C(2,3),若△ABC为直角三角形且AC边最长,则整数m的值为( )
A.4 B.3
C.2 D.1
解析:选D.由题意得∠B=90°,
即AB⊥BC,kAB·kBC=-1,所以·=-1.
解得m=1或m=,故整数m的值为1,故选D.
4.对于任给的实数m,直线(m-1)x+(2m-1)y=m-5都通过一定点,则该定点的坐标为( )
A.(9,-4) B.(-9,-4)
C.(9,4) D.(-9,4)
解析:选A.(m-1)x+(2m-1)y=m-5即为m(x+2y-1)+(-x-y+5)=0,故此直线过直线x+2y-1=0和-x-y+5=0的交点.由得定点的坐标为(9,-4).故选A.
5.已知点A(3,2)和B(-1,4)到直线ax+y+1=0的距离相等,则a的值为________.
解析:由点到直线的距离公式可得=,解得a=或a=-4.
答案:或-4
6.如果直线l1:ax+(1-b)y+5=0和直线l2:(1+a)x-y-b=0都平行于直线l3:x-2y+3=0,则l1,l2之间的距离为________.
解析:因为l1∥l3,所以-2a-(1-b)=0,同理-2(1+a)+1=0,解得a=-,b=0,因此l1:x-2y-10=0,l2:x-2y=0,d=2.
答案:2
7.已知两直线l1:ax-by+4=0和l2:(a-1)x+y+b=0,求满足下列条件的a,b的值.
(1)l1⊥l2,且直线l1过点(-3,-1);
(2)l1∥l2,且坐标原点到这两条直线的距离相等.
解:(1)因为l1⊥l2,
所以a(a-1)-b=0.
又因为直线l1过点(-3,-1),
所以-3a+b+4=0.
故a=2,b=2.
(2)因为直线l2的斜率存在,l1∥l2,
所以直线l1的斜率存在.
所以=1-a.①
又因为坐标原点到这两条直线的距离相等,
所以l1,l2在y轴上的截距互为相反数,即=b.②
联立①②可得a=2,b=-2或a=,b=2.
8.已知直线l经过直线2x+y-5=0与x-2y=0的交点P.
(1)点A(5,0)到直线l的距离为3,求直线l的方程;
(2)求点A(5,0)到直线l的距离的最大值.
解:(1)因为经过两已知直线交点的直线系方程为
(2x+y-5)+λ(x-2y)=0,即(2+λ)x+(1-2λ)y-5=0,
所以=3,解得λ=或λ=2.
所以直线l的方程为x=2或4x-3y-5=0.
(2)由
解得交点P(2,1),如图,过P作任一直线l,设d为点A到直线l的距离,
则d≤|PA|(当l⊥PA时等号成立).
所以dmax=|PA|=.
[综合题组练]
1.(2019·山东省实验中模拟)设a,b,c分别是△ABC的内角A,B,C所对的边,则直线sin A·x+ay-c=0与bx-sin B·y+sin C=0的位置关系是( )
A.平行 B.重合
C.垂直 D.相交但不垂直
解析:选C.由题意可得直线sin A·x+ay-c=0的斜率k1=-,直线bx-sin B·y+sin C=0的斜率k2=,k1k2=-·=-1,所以直线sin A·x+ay-c=0与直线bx-sin B·y+sin C=0垂直,故选C.
2.已知点A(1,3),B(5,-2),在x轴上有一点P,若|AP|-|BP|最大,则P点坐标为( )
A.(3.4,0) B.(13,0)
C.(5,0) D.(-13,0)
解析:选B.作出A点关于x轴的对称点A′(1,-3),则A′B所在直线方程为x-4y-13=0.令y=0得x=13,所以点P的坐标为(13,0).
3.已知a,b为正数,且直线ax+by-6=0与直线2x+(b-3)y+5=0互相平行,则2a+3b的最小值为________.
解析:由两直线互相平行可得a(b-3)=2b,即2b+3a=ab,+=1.又a,b为正数,所以2a+3b=(2a+3b)·=13++≥13+2=25,当且仅当a=b=5时取等号,故2a+3b的最小值为25.
答案:25
4.(应用型)(2019·安徽四校联考(二))已知入射光线经过点M(-3,4),被直线l:x-y+3=0反射,反射光线经过点N(2,6),则反射光线所在直线的方程为________.
解析:设点M(-3,4)关于直线l:x-y+3=0的对称点为M′(a,b),则反射光线所在直线过点M′,所以解得a=1,b=0.又反射光线经过点N(2,6),所以所求直线的方程为=,即6x-y-6=0.
答案:6x-y-6=0
5.已知直线l:x-y+3=0.
(1)求点A(2,1)关于直线l:x-y+3=0的对称点A′;
(2)求直线l1:x-2y-6=0关于直线l的对称直线l2的方程.
解:(1)设点A′(x′,y′),
由题知解得
所以A′(-2,5).
(2)在直线l1上取一点,如M(6,0),则M(6,0)关于直线l的对称点M′必在l2上.设对称点为M′(a,b),则解得M′(-3,9).设l1与l的交点为N,则由得N(-12,-9).又因为l2经过点N(-12,-9),所以直线l2方程为
y-9=(x+3),即2x-y+15=0.
6.已知△ABC的顶点A(5,1),AB边上的中线CM所在直线方程为2x-y-5=0,AC边上的高BH所在直线方程为x-2y-5=0,求直线BC的方程.
解:依题意知:kAC=-2,A(5,1),
所以lAC的方程为2x+y-11=0,
联立得C(4,3).
设B(x0,y0),则AB的中点M,
代入2x-y-5=0,得2x0-y0-1=0,
联立得B(-1,-3),
所以kBC=,所以直线BC的方程为y-3=(x-4),即6x-5y-9=0.
2020-2021学年6.2垂直关系的性质课时作业: 这是一份2020-2021学年6.2垂直关系的性质课时作业,共5页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
高中数学3.2由三视图还原成实物图课时练习: 这是一份高中数学3.2由三视图还原成实物图课时练习,共3页。
高中数学北师大版必修25.2平行关系的性质练习: 这是一份高中数学北师大版必修25.2平行关系的性质练习,共6页。