高中数学7.4 三角函数应用同步测试题
展开课后素养落实(四十三) 几个函数模型的比较
(建议用时:40分钟)
一、选择题
1.(多选题)当a>1时,其中正确的结论是( )
A.指数函数y=ax,当a越大时,其函数值的增长越快
B.指数函数y=ax,当a越小时,其函数值的增长越快
C.对数函数y=logax,当a越大时,其函数值的增长越快
D.对数函数y=logax,当a越小时,其函数值的增长越快
AD [结合指数函数及对数函数的图象可知AD正确.]
2.y1=2x,y2=x2,y3=log2x,当2<x<4时,有( )
A.y1>y2>y3 B.y2>y1>y3
C.y1>y3>y2 D.y2>y3>y1
B [在同一平面直角坐标系内画出这三个函数的图象(图略),在区间(2,4)内,从上到下图象依次对应的函数为y2=x2,y1=2x,y3=log2x,故y2>y1>y3.]
3.某地区植被被破坏,土地沙化越来越严重,最近三年测得沙漠增加值分别为0.2万公顷、0.4万公顷和0.76万公顷,则沙漠增加数y(万公顷)关于年数x(年)的函数关系较为近似的是( )
A.y=0.2x B.y=(x2+2x)
C.y= D.y=0.2+log16x
C [将x=1,2,3,y=0.2,0.4,0.76分别代入验算可知较为近似的是y=.]
4.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间后,为了赶时间加快速度行驶.与以上事件吻合得最好的图象是( )
A B
C D
C [小明匀速运动时,所得图象为一条直线,且距离学校越来越近,故排除A.因交通堵塞停留了一段时间,与学校的距离不变,故排除D.后来为了赶时间加快速度行驶,故排除B.故选C.]
5.某学校开展研究性学习活动,某同学获得一组实验数据如下表:
x | 1.99 | 3 | 4 | 5.1 | 6.12 |
y | 1.5 | 4.04 | 7.5 | 12 | 18.01 |
对于表中数据,现给出以下拟合曲线,其中拟合程度最好的是( )
A.y=2x-2 B.y=x
C.y=log2x D.y=(x2-1)
D [法一:相邻的自变量之差大约为1,相邻的函数值之差大约为2.5,3.5,4.5,6,基本上是逐渐增加的,二次曲线拟合程度最好,故选D.
法二:比较四个函数值的大小,可以采用特殊值代入法.可取x=4,经检验易知选D.]
二、填空题
6.函数y=x2与函数y=xln x在区间(0,+∞)上增长较快的一个是________ .
y=x2 [当x变大时,x比ln x增长要快,
∴x2要比xln x增长的要快.]
7.三个变量y1,y2,y3随变量x的变化情况如表:
x | 1.00 | 3.00 | 5.00 | 7.00 | 9.00 | 11.00 |
y1 | 5 | 135 | 625 | 1 715 | 3 645 | 6 655 |
y2 | 5 | 29 | 245 | 2 189 | 19 685 | 177 149 |
y3 | 5.00 | 6.10 | 6.61 | 6.95 | 7.20 | 7.40 |
其中关于x呈对数函数型变化的变量是________,呈指数函数型变化的变量是________,呈幂函数型变化的变量是________.
y3 y2 y1 [根据三种模型的变化特点,观察表中数据可知,y2随着x的增大而迅速增加,呈指数函数型变化,y3随着x的增大而增大,但变化缓慢,呈对数函数型变化,y1相对于y2的变化要慢一些,呈幂函数型变化.]
8.生活经验告诉我们,当水注入容器(设单位时间内进水量相同)时,水的高度随着时间的变化而变化,在图中请选择与容器相匹配的图象,A对应________;B对应________;C对应________;D对应________.
A B C D
(1) (2) (3) (4)
(4) (1) (3) (2) [A容器下粗上细,水高度的变化先慢后快,故与(4)对应;B容器为球形,水高度变化为快—慢—快,应与(1)对应;C,D容器都是柱形的,水高度的变化速度都应是直线型,但C容器细,D容器粗,故水高度的变化为:C容器快,与(3)对应,D容器慢,与(2)对应.]
三、解答题
9.函数f(x)=1.1x,g(x)=ln x+1,h(x)=x的图象如图所示,试分别指出各曲线对应的函数,并比较三个函数的增长差异(以1,a,b,c,d,e为分界点).
[解] 由指数爆炸、对数增长、幂函数增长的差异可得曲线C1对应的函数是f(x)=1.1x,曲线C2对应的函数是h(x)=x,曲线C3对应的函数是g(x)=ln x+1.
由题图知,
当x<1时,f(x)>h(x)>g(x);
当1<x<e时,f(x)>g(x)>h(x);
当e<x<a时,g(x)>f(x)>h(x);
当a<x<b时,g(x)>h(x)>f(x);
当b<x<c时,h(x)>g(x)>f(x);
当c<x<d时,h(x)>f(x)>g(x);
当x>d时,f(x)>h(x)>g(x).
10.某地西红柿从2月1日起开始上市,通过市场调查,得到西红柿种植成本Q(单位:元/100 kg)与上市时间t(单位:天)的数据如下表:
时间t(天) | 60 | 100 | 180 |
种植成本Q(元/100 kg) | 116 | 84 | 116 |
根据上表数据,从下列函数中选取一个函数描述西红柿的种植成本Q与上市时间t的变化关系.
Q=at+b,Q=at2+bt+c,Q=a·bt,Q=a·logbt.
利用你选取的函数,回答下列问题:
(1)求西红柿种植成本最低时的上市天数;
(2)求最低种植成本.
[解] 根据表中数据可知函数不单调,所以Q=at2+bt+c,且开口向上.
(1)函数图象的对称轴方程为t=-==120,所以西红柿种植成本最低时的上市天数是120.
(2)将表格中的数据代入Q=at2+bt+c,
得解得
所以Q=0.01t2-2.4t+224,
所以最低种植成本是14 400a+120b+c=14 400×0.01+120×(-2.4)+224=80(元/100 kg).
1.某林区的森林蓄积量每年比上一年平均增长10.4%,要增长到原来的x倍,需经过y年,则函数y=f(x)的图象大致为( )
A B C D
D [设该林区的森林原有蓄积量为a,由题意可得ax=a(1+0.104)y,故y=log1.104x(x≥1),所以函数y=f(x)的图象大致为D中的图象,故选D.]
2.(多选题)某池塘中野生水葫芦的面积与时间的函数关系的图象如图所示,假设其关系为指数函数,给出的下列说法正确的是( )
A.此指数函数的底数为2
B.在第5个月时,野生水葫芦的面积就会超过30 m2
C.野生水葫芦从4 m2蔓延到12 m2只需1.5个月
D.设野生水葫芦蔓延到2 m2,3 m2,6 m2所需的时间分别为t1,t2,t3,则有t1+t2=t3
ABD [易知该指数函数的解析式为f(x)=2x,所以A正确;当x=5时,f(5)=32>30,所以B正确;由f(x1)=2x1=4和f(x2)=2x2=12,得x1=2,x2=log212=2+log23,所以x2-x1=log23>1.5,所以C错误;设2t1=2,2t2=3,2t3=6,则t1=1,t2=log23,t3=log26,则t1+t2=1+log23=log2(2×3)=log26=t3,所以D正确.]
3.若已知16<x<20,利用图象可判断出x和log2x的大小关系为________.
x>log2x [作出f(x)=x和g(x)=log2x的图象,如图所示:
由图象可知,在(0,4)内,x>log2x;
x=4或x=16时,x=log2x;
在(4,16)内,x<log2x;在(16,20)内,x>log2x.]
4.已知某工厂生产某种产品的月产量y与月份x满足关系y=a·0.5x+b,现已知该厂今年1月、2月生产该产品分别为1万件、1.5万件.则此厂3月份该产品的产量为________万件.
1.75 [∵y=a·0.5x+b,且当x=1时,y=1,当x=2时,y=1.5,则有解得
∴y=-2×0.5x+2.
当x=3时,y=-2×0.125+2=1.75(万件).]
某鞋厂从今年1月份开始投产,并且前四个月的产量分别为1万件、1.2万件、1.3万件、1.37万件.由于产品质量好,款式受欢迎,前几个月的产品销售情况良好.为了使推销员在推销产品时,接受订单不至于过多或过少,需要估测以后几个月的产量.以这四个月的产品数据为依据,用一个函数模拟产品的月产量y与月份x的关系,模拟函数有三个备选:①一次函数f(x)=kx+b(k≠0),②二次函数g(x)=ax2+bx+c(a,b,c为常数,a≠0),③指数型函数m(x)=abx+c(a,b,c为常数,a≠0,b>0,b≠1).厂里分析,产量的增加是由于工人生产熟练和理顺了生产流程.厂里也暂时不准备增加设备和工人,假如你是厂长,将会采用什么办法估计以后几个月的产量?
[解] 将已知前四个月的月产量y与月份x的关系记为A(1,1),B(2,1.2),C(3,1.3),D(4,1.37).
①对于一次函数f(x)=kx+b(k≠0),将B,C两点的坐标代入,有f(2)=2k+b=1.2,f(3)=3k+b=1.3,
解得k=0.1,b=1,故f(x)=0.1x+1.
所以f(1)=1.1,与实际误差为0.1,f(4)=1.4,与实际误差为0.03.
②对于二次函数g(x)=ax2+bx+c(a,b,c为常数,a≠0),将A,B,C三点的坐标代入,得
解得
故g(x)=-0.05x2+0.35x+0.7,
所以g(4)=-0.05×42+0.35×4+0.7=1.3,
与实际误差为0.07,
③对于指数型函数m(x)=abx+c(a,b,c为常数,a≠0,b>0,b≠1),将A,B,C三点的坐标代入,得
解得
故m(x)=-0.8×0.5x+1.4,
所以m(4)=-0.8×0.54+1.4=1.35,与实际误差为0.02.
比较上述3个模拟函数的优劣,既要考虑到剩余点的误差值最小,又要考虑生产的实际问题,比如增产的趋势和可能性,可以认为m(x)最佳,一是误差值最小,二是由于新建厂,开始随着工人技术、管理效益逐渐提高,一段时间内产量明显上升,但到一定时期后,设备不更新,那么产量必然要趋于稳定,而m(x)恰好反映了这种趋势,因此选用m(x)=-0.8×0.5x+1.4来估计以后几个月的产量比较接近客观实际.
高中数学苏教版 (2019)必修 第一册8.2 函数与数学模型测试题: 这是一份高中数学苏教版 (2019)必修 第一册8.2 函数与数学模型测试题,共6页。试卷主要包含了以下四种说法中,正确的是等内容,欢迎下载使用。
苏教版 (2019)必修 第一册7.4 三角函数应用同步训练题: 这是一份苏教版 (2019)必修 第一册7.4 三角函数应用同步训练题,共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
苏教版 (2019)必修 第一册第8章 函数应用8.1 二分法与求方程近似解测试题: 这是一份苏教版 (2019)必修 第一册第8章 函数应用8.1 二分法与求方程近似解测试题,共5页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。