苏教版 (2019)必修 第一册7.4 三角函数应用同步练习题
展开章末综合测评(八) 函数应用
(满分:150分 时间:120分钟)
一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.函数f(x)=(x2-1)·的零点个数是( )
A.1 B.2
C.3 D.4
B [要使函数有意义,则x2-4≥0,解得x≥2或x≤-2.由f(x)=0得x2-4=0或x2-1=0(不成立舍去),即x=2或x=-2.所以函数的零点个数为2.故选B.]
2.函数f(x)=log2x+3x-4的零点所在的一个区间是( )
A.(-2,-1) B.(-1,0)
C.(0,1) D.(1,2)
D [∵函数y1=log2x在区间(0,+∞)上为增函数,函数y2=3x-4为增函数,
所以,函数f(x)=log2x+3x-4在区间(0,+∞)上为增函数,则该函数最多有一个零点,
又f(1)=-1<0,f(2)=3>0,
因此,函数f(x)=log2x+3x-4的零点所在的一个区间是(1,2).故选D.]
3.一种放射性物质不断变化为其他物质,每经过一年,剩留的物质约是原来的.经过x年,剩留的物质是原来的,则x为( )
A.2 B.3
C.4 D.5
B [先求剩留量y随时间x(年)变化的函数关系式,设物质最初的质量为1,则经过1年,y=1×=,经过2年,y=×=2,…,那么经过x年,则y=x.依题意得x=,解得x=3.]
4.某商场在销售空调旺季的4天内的利润如下表所示.
时间
1
2
3
4
利润(千元)
2
3.98
8.01
15.99
现构建一个销售这种空调的函数模型,应是下列函数中的( )
A.y=log2x B.y=2x
C.y=x2 D.y=2x
B [画出散点图(图略),由散点图可知,这种空调的函数模型为y=2x.]
5.利用二分法求方程log3x=5-x的近似解,可以取得一个区间( )
A.(0,1) B.(1,2)
C.(2,3) D.(3,4)
D [设函数f(x)=log3x-(5-x),
因为f(3)=1-2=-1<0,f(4)=log34-1>0,
所以f(3)·f(4)<0,由零点存在定理可知函数f(x)在区间(3,4)上至少存在一个零点,
故方程log3x=5-x的近似解可取区间(3,4).]
6.已知函数f(x)=若关于x的方程f(x)=k有两个不等的实根,则实数k的取值范围是( )
A.(0,+∞) B.(-∞,1)
C.(1,+∞) D.(0,1]
D [作出函数f(x)的图象,由图象知,当0
每户每月用水量
水价
不超过12 m3的部分
3元/m3
超过12 m3但不超过18 m3的部分
6元/m3
超过18 m3的部分
9元/m3
若某户居民本月交纳的水费为54元,则此户居民本月用水量为( )
A.20 m3 B.18 m3
C.15 m3 D.14 m3
C [设此户居民本月用水量为x m3,缴纳的水费为y元,
则当x∈[0,12]时,y=3x≤36元,不符合题意;
当x∈(12,18]时,y=12×3+(x-12)·6=6x-36,令6x-36=54,解得x=15,符合题意;
当x∈(18,+∞)时,y=12×3+6×6+(x-18)·9=9x-90>72,不符合题意.
综上所述:此户居民本月用水量为15 m3.故选C.]
8.加工爆米花时,爆开且不煳的粒数占加工总粒数的百分比称为“可食用率”,在特定条件下,可食用率p与加工时间t(单位:分钟)满足函数关系p=at2+bt+c(a,b,c是常数),如图记录了三次实验的数据,根据上述函数模型和实验数据,可以得到最佳加工时间为( )
A.3.50分钟 B.3.75分钟
C.4.00分钟 D.4.25分钟
B [由图形可知,三点(3,0.7),(4,0.8),(5,0.5)都在函数p=at2+bt+c的图象上,
所以 ,解得a=-0.2,b=1.5,c=-2,
所以p=-0.2t2+1.5t-2=-0.22+,因为t>0,所以当t==3.75时,p取最大值,
故此时的t=3.75分钟为最佳加工时间,故选B.]
二、选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分)
9.已知函数f(x)=xex-ax-1,则关于f(x)的零点,叙述错误的是( )
A.当a=0时,函数f(x)有两个零点
B.函数f(x)必有一个零点是正数
C.当a<0时,函数f(x)有两个零点
D.当a>0时,函数f(x)只有一个零点
ACD [f(x)=0⇔ex=a+,在同一坐标系中作出y=ex与y=的图象,
可观察出A、C、D选项错误,应选ACD.]
10.设a为实数,则直线y=a和函数y=x4+1的图象的公共点个数可以是
( )
A.0 B.1
C.2 D.3
ABC [因为函数y=x4+1为定义在R上的偶函数,且在(-∞,0]上为减函数,在[0,+∞)上为增函数,且函数的最小值为1,所以当a<1,a=1,a>1时,直线y=a和函数y=x4+1的图象的公共点个数分别为0,1,2.故选ABC.]
11.为了给地球减负,提高资源利用率,2019年全国掀起了垃圾分类的热潮,垃圾分类已经成为新时尚.假设某市2019年全年用于垃圾分类的资金为5 000万元,在此基础上,每年投入的资金比上一年增长20%,则该市全年用于垃圾分类的资金超过1.28亿元的年份可能是(参考数据:lg 1.2≈0.079,lg 2≈0.301)( )
A.2023年 B.2024年
C.2025年 D.2026年
CD [设经过n年之后该市全年用于垃圾分类的资金超过1.28亿元,
则投入的资金为y=5 000×(1+20%)n,
由题意可得:y=5 000×(1+20%)n>12 800,
即1.2n>2.56,
∴nlg 1.2>lg 2.56=lg 28-2,
∴n>≈≈5.16,
∵n∈Z,∴n≥6,
即从2025年开始该市全年用于垃圾分类的资金超过1.28亿元,故选CD.]
12.已知f(x)=,当a∈M时,总存在实数b,使函数g(x)=f(x)-b有两个零点,则集合M可以是( )
A.(-∞,0] B.(1,+∞)
C.(-∞,0) D.(0,1)
BC [要使得g(x)=f(x)-b有两个零点,
即f(x)=b有两个根,必须有y=f(x)与y=b的图象有两个交点,
由x3=x2可得,x=0或x=1.
①当a>1时,函数y=f(x)的图象如图所示,此时存在b,满足题意,故a>1满足题意.
②当a=1时,由于函数y=f(x)在定义域R上单调递增,故不符合题意.
③当0
④当a=0时,函数y=f(x)单调递增,故不符合题意.
⑤当a<0时,函数y=f(x)的图象如图所示,此时存在b使得y=f(x)与y=b有两个交点.
综上可得a∈(-∞,0)∪(1,+∞).所以应选BC.]
三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)
13.函数f(x)=x+2x-10的零点所在区间为(n,n+1),n∈Z,则n=________.
2 [因为f(2)=2+4-10=-4<0,f(3)=3+8-10=1>0, 所以f(2)f(3)<0,
由函数零点存在定理知函数f(x)=x+2x-10在区间(2,3)上有零点,所以n=2.]
14.用二分法研究函数f(x)=x3+ln 的零点时,第一次经计算f(0)<0,
f >0,可得其中一个零点x0∈________,第二次应计算________.(本题第一空2分,第二空3分)
f [由于f(0)<0,f >0,
故f(x)在上存在零点,所以x0∈,
第二次应计算0和在数轴上对应的中点x1==.]
15.已知[x]表示不超过实数x的最大整数,如[1.8]=1,[-1.2]=-2.x0是函数f(x)=ln x-的零点,则[x0]等于________.
2 [∵函数f(x)的定义域为(0,+∞),∴函数f(x)在(0,+∞)上单调递增.由f(2)=ln 2-1<0,f(e)=ln e->0,知x0∈(2,e),∴[x0]=2.]
16.已知函数f(x)= 其中a>0,且a≠1,若函数y=f(x)-1有3个不同的零点x1,x2,x3,且x1+x2+x3>0,则实数a的取值范围是________.
[如图所示:当a>1时,函数y=f -1有2个不同的零点,不满足;
当0-2.
ax-1=1,故x=loga2>-2,故0 四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)
17.(本小题满分10分)已知函数f(x)=x3-x2++.证明:存在x0∈,使f(x0)=x0.
[证明] 令g(x)=f(x)-x.
∵g(0)=,g=f -=-,
∴g(0)·g<0.又函数g(x)在上连续,
∴存在x0∈,使g(x0)=0.即f(x0)=x0.
18.(本小题满分12分)定义在R上的奇函数f(x)满足:当x>0时,f(x)=2 020x+log2 020x,试确定f(x)在R上的零点个数.
[解] ∵函数f(x)是定义在R上的奇函数,
∴f(0)=0.
因为log2 020=-2,2 020≈1,log2 020=-1,2 020>1,∴f <0,f >0,
∴f(x)=2 020x+log2 020x在区间内存在零点.
易知f(x)在(0,+∞)上是单调增函数,
∴f(x)在(0,+∞)内有且只有一个零点,
根据奇函数的对称性可知,
函数f(x)在(-∞,0)内有且只有一个零点.
综上可知函数f(x)在R上的零点个数为3.
19.(本小题满分12分)已知A,B两地相距150 km,某人开汽车以60 km/h的速度从A地到达B地,在B地停留1小时后再以50 km/h的速度返回A地.
(1)把汽车离开A地的距离s表示为时间t的函数(从A地出发时开始),并画出函数的图象;
(2)把车速v(km/h)表示为时间t(h)的函数,并画出函数的图象.
[解] (1)①汽车由A地到B地行驶t h所走的距离s=60t(0≤t≤2.5).
②汽车在B地停留1小时,则汽车到A地的距离s=150(2.5<t≤3.5).
③由B地返回A地,则汽车到A地的距离s=150-50(t-3.5)=325-50t(3.5<t≤6.5).
综上,s=
它的图象如图(1)所示.
(1) (2)
(2)速度v(km/h)与时间t(h)的函数关系式是v=它的图象如图(2)所示.
20.(本小题满分12分)某电脑公司生产A型手提电脑,2016年平均每台A型手提电脑生产成本为5 000元,并以纯利润20%标定出厂价.2017年开始,公司加强管理,降低生产成本.2020年平均每台A型手提电脑尽管出厂价仅是2016年出厂价的80%,但却实现了纯利润50%的高收益.
(1)求2020年每台A型手提电脑的生产成本;
(2)以2016年的生产成本为基数,用二分法求2017~2020年生产成本平均每年降低的百分数(精确到0.01).
[解] (1)设2020年每台A型手提电脑的生产成本为P元,依题意得P(1+50%)=5 000×(1+20%)×80%,
解得P=3 200,
所以2020年每台A型手提电脑的生产成本为3 200元.
(2)设2017~2020年生产成本平均每年降低的百分数为x,根据题意,得5 000(1-x)4=3 200(0
则f(0.10)=0.05>0,
f(0.11)=-0.039 5<0,
所以f(x)在(0.10,0.11)内有一个零点x0.
取区间[0.10,0.11]的中点0.105,
则f(0.105)≈0.005>0,
所以f(0.11)·f(0.105)<0,
所以x0∈(0.105,0.11).
0.105和0.11精确到0.01的近似值都是0.11.
所以f(x)=0的近似解可以是0.11.
所以2017~2020年生产成本平均每年降低11%.
21.(本小题满分12分) 已知函数f(x)=1-(a>0,a≠1)且f(0)=0.
(1)求a的值;
(2)若函数g(x)=(2x+1)·f(x)+k有零点,求实数k的取值范围;
(3)当x∈(0,1)时,若f(x)>m·2x-2恒成立,求实数m的取值范围.
[解] (1)由f(0)=0得1-=0,即a+2=4,解得a=2.
(2)由(1)可知f(x)=1-=,函数g(x)=(2x+1)·f(x)+k有零点⇔方程2x-1+k=0有解,即k=1-2x有解,
∵1-2x∈(-∞,1),∴k∈(-∞,1).
(3)∵f(x)=,由f(x)>m·2x-2得m(2x)2+(m-3)2x-1<0,
令t=2x,∵x∈(0,1),∴t∈(1,2),
即f(x)>m·2x-2⇔mt2+(m-3)t-1<0对于t∈(1,2)恒成立,
设g(t)=mt2+(m-3)t-1,
①当m<0时,m-3<0,∴g(t)=mt2+(m-3)t-1<0在(1,2)上恒成立.
∴m<0符合题意;
②当m=0时,g(t)=-3t-1<0在(1,2)上恒成立,
∴m=0符合题意;
③当m>0时,只需⇒⇒m≤,∴0
22.(本小题满分12分)某个体经营者把开始六个月试销A,B两种商品的逐月投资与所获纯利润列成下表:
投资A种商品金额(万元)
1
2
3
4
5
6
获纯利润(万元)
0.65
1.39
1.85
2
1.84
1.40
投资B种商品金额(万元)
1
2
3
4
5
6
获纯利润(万元)
0.25
0.49
0.76
1
1.26
1.51
该经营者准备下月投入12万元经营这两种产品,但不知投入A,B两种商品各多少万元才合算.请你帮助制定一个资金投入方案,使得该经营者能获得最大利润,并按你的方案求出该经营者下月可获得的最大纯利润(结果保留两位有效数字).
[解] 以投资额为横坐标,纯利润为纵坐标,在平面直角坐标系中画出散点图,如下图所示.
图(1) 图(2)
观察散点图可以看出,A种商品所获纯利润y与投资额x之间的变化规律可以用二次函数模型进行模拟,如图(1)所示,
取(4,2)为最高点,则y=a(x-4)2+2,再把点(1,0.65)代入,得0.65=a(1-4)2+2,解得a=-0.15,
所以y=-0.15(x-4)2+2.
B种商品所获纯利润y与投资额x之间的变化规律是线性的,可以用一次函数模型进行模拟,如图(2)所示.
设y=kx+b,取点(1,0.25)和(4,1)代入,
得解得
所以y=0.25x.
即前六个月所获纯利润y关于月投资A种商品的金额x的函数关系式是y=-0.15(x-4)2+2;前六个月所获纯利润y关于月投资B种商品的金额x的函数关系式是y=0.25x.
设下月投入A,B两种商品的资金分别为xA,xB(万元),总利润为W(万元),
那么
所以W=-0.152+0.15×2+2.6.
当xA=≈3.2(万元)时,W取最大值,约为4.1万元,此时xB=8.8(万元).
即该经营者下月把12万元中的3.2万元投资A种商品,8.8万元投资B种商品,可获得最大利润约为4.1万元.
数学第5章 函数概念与性质本章综合与测试一课一练: 这是一份数学第5章 函数概念与性质本章综合与测试一课一练,共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
高中数学苏教版 (2019)必修 第一册4.1 指数精练: 这是一份高中数学苏教版 (2019)必修 第一册4.1 指数精练,共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
苏教版 (2019)必修 第一册第3章 不等式本章综合与测试课后测评: 这是一份苏教版 (2019)必修 第一册第3章 不等式本章综合与测试课后测评,共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。