![高中数学第一章直线与圆2圆与圆的方程1.2.4圆与圆的位置关系课后素养训练含解析北师大版选择性必修第一册第1页](http://img-preview.51jiaoxi.com/3/3/12202335/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![高中数学第一章直线与圆2圆与圆的方程1.2.4圆与圆的位置关系课后素养训练含解析北师大版选择性必修第一册第2页](http://img-preview.51jiaoxi.com/3/3/12202335/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:高中数学课后素养训练含解析北师大版选择性必修第一册专题
数学选择性必修 第一册2.4 圆与圆的位置关系精练
展开
这是一份数学选择性必修 第一册2.4 圆与圆的位置关系精练,共5页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
课后素养落实(十) 圆与圆的位置关系(建议用时:40分钟)一、选择题1.圆O1:x2+y2-2x=0和圆O2:x2+y2-4y=0的位置关系为( )A.相离 B.相交 C.外切 D.内切B [圆O1的圆心坐标为(1,0),半径长r1=1;圆O2的圆心坐标为(0,2),半径长r2=2;1=r2-r1<|O1O2|=<r1+r2=3,即两圆相交.]2.设两圆C1,C2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C1C2|=( )A.4 B.4 C.8 D.8C [依题意,可设圆心坐标为(a,a),半径为r,其中r=a>0,因此圆方程是(x-a)2+(y-a)2=a2,由圆过点(4,1),得(4-a)2+(1-a)2=a2,即a2-10a+17=0,则该方程的两根分别是圆心C1,C2的横坐标,|C1C2|=×=8.]3.圆(x+2)2+y2=5关于直线x-y+1=0对称的圆的方程为( )A.(x-2)2+y2=5 B.x2+(y-2)2=5C.(x-1)2+(y-1)2=5 D.(x+1)2+(y+1)2=5D [由圆(x+2)2+y2=5,可知其圆心为(-2,0),半径为.设点(-2,0)关于直线x-y+1=0对称的点为(x,y),则解得∴所求圆的圆心为(-1,-1).又所求圆的半径为,∴圆(x+2)2+y2=5关于直线x-y+1=0对称的圆的方程为(x+1)2+(y+1)2=5.]4.圆O1:x2+y2-6x+16y-48=0与圆O2:x2+y2+4x-8y-44=0的公切线条数为( )A.4条 B.3条 C.2条 D.1条C [圆O1为(x-3)2+(y+8)2=121,O1(3,-8),r=11,圆O2为(x+2)2+(y-4)2=64,O2(-2,4),R=8,∴|O1O2|= =13,∴r-R<|O1O2|<R+r,∴两圆相交.∴公切线有2条.]5.台风中心从A地以20 km/h的速度向东北方向移动,离台风中心30 km内的地区为危险区,城市B在A地正东40 km处,则城市B处于危险区内的时间为( )A.0.5 h B.1 h C.1.5 h D.2 hB [如图,以A地为原点,AB所在直线为x轴,建立平面直角坐标系,则以B(40,0)为圆心,30为半径的圆内MN之间(含端点)为危险区,可求得|MN|=20,∴时间为1 h.]二、填空题6.若圆x2+y2-2ax+a2=2和x2+y2-2by+b2=1外离,则a,b满足的条件是________.a2+b2>3+2 [由题意可得两圆圆心坐标和半径长分别为(a,0),和(0,b),1,因为两圆相离,所以>+1,即a2+b2>3+2.]7.若两圆x2+y2=m和x2+y2+6x-8y-11=0有公共点,则实数m的取值范围是________.[1,121] [x2+y2+6x-8y-11=0化成标准方程为(x+3)2+(y-4)2=36.圆心距为d==5,若两圆有公共点,则|6-|≤5≤6+,解得1≤m≤121.]8.到点A(-1,2),B(3,-1)的距离分别为3和1的直线有________条.4 [到点A(-1,2)的距离为3的直线是以A为圆心,3为半径的圆的切线;同理,到B的距离为1的直线是以B为圆心,半径为1的圆的切线,所以满足题设条件的直线是这两圆的公切线,而这两圆的圆心距|AB|==5.半径之和为3+1=4,因为5>4,所以圆A和圆B外离,因此它们的公切线有4条.]三、解答题9.已知两圆x2+y2-2x+10y-24=0和x2+y2+2x+2y-8=0.(1)判断两圆的位置关系;(2)求公共弦所在的直线方程;(3)求公共弦的长度.[解] (1)将两圆方程配方化为标准方程,则C1:(x-1)2+(y+5)2=50,C2:(x+1)2+(y+1)2=10,∴圆C1的圆心坐标为(1,-5),半径为r1=5,圆C2的圆心坐标为(-1,-1),半径为r2=.又∵|C1C2|=2,r1+r2=5+,|r1-r2|=|5-|,∴|r1-r2|<|C1C2|<r1+r2,∴两圆相交.(2)将两圆方程相减,得公共弦所在的直线方程为x-2y+4=0.(3)法一:由(2)知圆C1的圆心(1,-5)到直线x-2y+4=0的距离为d==3,∴公共弦长为l=2=2=2.法二:设两圆相交于点A,B,则A,B两点满足方程组解得或∴|AB|==2.即公共弦长为2.10.已知两圆x2+y2-2x-6y-1=0和x2+y2-10x-12y+m=0.(1)m取何值时两圆外切?(2)m取何值时两圆内切?(3)求m=45时两圆的公共弦所在直线的方程和公共弦的长.[解] 两圆的标准方程为:(x-1)2+(y-3)2=11,(x-5)2+(y-6)2=61-m,圆心分别为M(1,3),N(5,6),半径分别为和.(1)当两圆外切时,=+,解得m=25+10.(2)当两圆内切时,因定圆的半径小于两圆圆心间距离5,故只有-=5,解得m=25-10.(3)两圆的公共弦所在直线方程为(x2+y2-2x-6y-1)-(x2+y2-10x-12y+45)=0,即4x+3y-23=0,∴公共弦长为2=2.11.若圆C1:x2+y2=1与圆C2:x2+y2-6x-8y+m=0外切,则m=( )A.21 B.19 C.9 D.-11C [依题意可得圆C1:x2+y2=1与圆C2:x2+y2-6x-8y+m=0的圆心分别为C1(0,0),C2(3,4),则|C1C2|= =5.又r1=1,r2=,由r1+r2=+1=5,解得m=9.]12.点P在圆C1:x2+y2-8x-4y+11=0上,点Q在圆C2:x2+y2+4x+2y+1=0上,则|PQ|的最小值是( )A.5 B.1 C.3-5 D.3+5C [圆C1:x2+y2-8x-4y+11=0,即(x-4)2+(y-2)2=9,圆心为C1(4,2),半径为3;圆C2:x2+y2+4x+2y+1=0,即(x+2)2+(y+1)2=4,圆心为C2(-2,-1),半径为2;两圆相离,|PQ|的最小值为|C1C2|-(r1+r2)=3-5.]13.(多选题)已知圆O1的方程为x2+y2=1,圆O2的方程为(x+a)2+y2=4,如果这两个圆有且只有一个公共点,那么a的取值可以是( )A.-1 B.-3 C.1 D.3ABCD [由题意得两圆的圆心距d=|a|=2+1=3或d=|a|=2-1=1,解得a=3或a=-3或a=1或a=-1,所以a的所有取值构成的集合是{1,-1,3,-3}.]14.(一题两空)若圆O:x2+y2=5与圆O1:(x-m)2+y2=20(m∈R)相交于A,B两点,且两圆在点A处的切线互相垂直,则直线AB的方程为________;线段AB的长为________.x=±1 4 [连接OO1,记AB与OO1的交点为C,如图所示,在Rt△OO1A中,|OA|=,|O1A|=2,∴|OO1|=5,∴|AC|==2,∴|AB|=4.由|OO1|=5,得m=±5,所以,直线AB的方程为x=±1.]15.已知⊙M:x2+y2-2x-2y-2=0,直线l:2x+y+2=0,P为l上的动点.过点P作⊙M的切线PA,PB,切点为A,B,当|PM|·|AB|最小时,直线AB的方程为( )A.2x-y-1=0 B.2x+y-1=0C.2x-y+1=0 D.2x+y+1=0D [法一:由⊙M:x2+y2-2x-2y-2=0①,得⊙M:(x-1)2+(y-1)2=4,所以圆心M(1,1).如图,连接AM,BM,易知四边形PAMB的面积为|PM|·|AB|,欲使|PM|·|AB|最小,只需四边形PAMB的面积最小,即只需△PAM的面积最小.因为|AM|=2,所以只需|PA|最小.又|PA|==,所以只需直线2x+y+2=0上的动点P到M的距离最小,其最小值为=,此时PM⊥l,易求出直线PM的方程为x-2y+1=0.由得所以P(-1,0).易知P,A,M,B四点共圆,所以以PM为直径的圆的方程为x2+=,即x2+y2-y-1=0②,由①②得,直线AB的方程为2x+y+1=0,故选D.法二:因为⊙M:(x-1)2+(y-1)2=4,所以圆心M(1,1).连接AM,BM,易知四边形PAMB的面积为|PM|·|AB|,欲使|PM|·|AB|最小,只需四边形PAMB的面积最小,即只需△PAM的面积最小.因为|AM|=2,所以只需|PA|最小.又|PA|==,所以只需|PM|最小,此时PM⊥l.因为PM⊥AB,所以l∥AB,所以kAB=-2,排除A,C.易求出直线PM的方程为x-2y+1=0,由得所以P(-1,0).因为点M到直线x=-1的距离为2,所以直线x=-1过点P且与⊙M相切,所以A(-1,1).因为点A(-1,1)在直线AB上,故排除B.故选D.]
相关试卷
这是一份高中数学人教A版 (2019)选择性必修 第一册2.5 直线与圆、圆与圆的位置课后作业题,共5页。试卷主要包含了由于2<d<4,所以两圆相交,圆C1,已知圆C1,若曲线C1等内容,欢迎下载使用。
这是一份人教A版 (2019)选择性必修 第一册2.5 直线与圆、圆与圆的位置课后练习题,共5页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份数学选择性必修 第一册2.5 直线与圆、圆与圆的位置第2课时练习题,共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。