|试卷下载
终身会员
搜索
    上传资料 赚现金
    高中数学第三章空间向量与立体几何3.4.2用向量方法研究立体几何中的位置关系课后素养训练含解析北师大版选择性必修第一册
    立即下载
    加入资料篮
    高中数学第三章空间向量与立体几何3.4.2用向量方法研究立体几何中的位置关系课后素养训练含解析北师大版选择性必修第一册01
    高中数学第三章空间向量与立体几何3.4.2用向量方法研究立体几何中的位置关系课后素养训练含解析北师大版选择性必修第一册02
    高中数学第三章空间向量与立体几何3.4.2用向量方法研究立体几何中的位置关系课后素养训练含解析北师大版选择性必修第一册03
    还剩4页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学选择性必修 第一册4.2 用向量方法讨论立体几何中的位置关系课时作业

    展开
    这是一份数学选择性必修 第一册4.2 用向量方法讨论立体几何中的位置关系课时作业,共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    课后素养落实(二十六) 用向量方法研究立体几何中的位置关系

    (建议用时:40分钟)

    一、选择题

    1设直线l的方向向量为a平面α的法向量为ba·b0(  )

    Alα  Blα  Clα  Dlαlα

    D [a·b0lαlα]

    2已知非零向量abc分别为直线abc的方向向量aλb(λ0)b·c0ac的位置关系是(  )

    A垂直  B.平行  C.相交  D.异面

    A [aλb(λ0),知ab,由b·c0,知bc,故选A]

    3已知直线l1的方向向量为a(24x)直线l2的方向向量为b(2y4)l1l2xy(  )

    A1  B1  C0  D.无法确定

    A [l1l2ab,即a·b044y4x0,即xy=-1]

    4如图在正方体ABCD­A1B1C1D1棱长为aMN分别为A1BAC的中点MN与平面BB1C1C的位置关系是(  )

    A相交

    B平行

    C垂直

    D不能确定

    B [C1B1C1D1C1C所在直线分别为xyz轴建立空间直角坐标系,则A1(aa0)B(a0a)A(aaa)C(00a)MN

    ,易知(0a0)是平面BB1C1C的一个法向量,而·=- ×00×a ×00

    MN平面BB1C1C]

    5如图所示正方体ABCD­A1B1C1D1EF分别在A1DACA1EA1DAFAC(  )

    AEF至多与A1DAC之一垂直

    BEFA1DAC都垂直

    CEFBD1相交

    DEFBD1异面

    B [分别以DADCDD1x轴,y轴,z轴建立空间直角坐标系D­xyz(图略),设正方体的棱长为3,则A(300)C(030)D(000)A1(303)E(101)F(210)

    (30,-3)(330)(11,-1)

    ·0·0

    A1DEFACEF]

    二、填空题

    6已知平面α的法向量为(2m1)平面β的法向量为αβ相交mn满足的条件是________

    m4n [αβ相交,α的法向量与β的法向量不共线.,或.即m4,或n]

    7已知向量n1(213)n2(10515)分别是平面αβ的法向量那么平面αβ的位置关系为________

    平行 [n1(213)n2(10,-5,-15)

    n2=-5n1n1n2,即αβ]

    8λμ (λμR)则直线AB与平面CDE的位置关系是________

    AB平面CDEAB平面CDE [λμ (λμR)

    共面.

    AB平面CDEAB平面CDE]

    三、解答题

    9.如图在四面体ABOCOCOAOCOB,∠AOB120°OAOBOC1PAC的中点QAB上且AB3AQ证明:PQOA

    [证明] 如图,连接OPOQPQ,取O为坐标原点,以OAOC所在直线为x轴,z轴,建立空间直角坐标系Oxyz(如图所示)

    A(100)C(001)B

    PAC的中点,

    P

    又由已知,可得

    ·0,即PQOA

    10在正方体ABCD­A1B1C1D1在棱DD1上是否存在点P使B1D平面PAC?

    [] D为原点建立空间直角坐标系,如图,设存在点P(00z),且正方体棱长为a

    (a0z)(aa0)(aaa)

    B1D平面PAC

    ·0·0

    a2az0za,即点PD1重合.

    PD1重合时,DB1平面PAC

    11.如图所示在正方体ABCD­A1B1C1D1O是底面正方形ABCD的中心MD1D的中点NA1B1的中点则直线ONAM的位置关系是(  )

    A平行   B.相交

    C异面垂直   D.异面不垂直

    C [A为原点,分别以所在直线分别为xyz轴,建立空间直角坐标系(图略),设正方体的棱长为1,则A(000)MON··0

    ONAM垂直,易得ONAM异面,故ONAM异面垂直.]

    12如图正方形ABCD与矩形ACEF所在平面互相垂直ABAF1MEFAM平面BDE.则M点的坐标为(  )

    A(111)

    B

    C

    D

    C [ACBD相交于O点,连接OE,由AM平面BDE,且AM平面ACEF,平面ACEF平面BDEOEAMEO

    O是正方形ABCD对角线交点,

    M为线段EF的中点.

    在空间坐标系中,E(001)F(1)

    由中点坐标公式,知点M的坐标]

    13(多选题)如图在平行六面体ABCD­A1B1C1D1MPQ分别为棱ABCDBC的中点平行六面体的各棱长均相等.则下列结论正确的是(  )

    AA1MD1P

    BA1MB1Q

    CA1M平面DCC1D1

    DA1M平面D1PQB1

    ACD [DP

    ,从而A1MD1P,可得ACD正确.

    B1QD1P不平行,故B不正确.]

    14已知正方体ABCD­A1B1C1D1的棱长为1在对角线A1D上取点MCD1上取点N使得线段MN平行于对角面A1ACC1则线段MN的最小值为________

     [如图所示,作MM1AD,垂足为M1,作NN1CD,垂足为N1

    在正方体ABCD­A1B1C1D1中,根据面面垂直的性质定理,可得MM1NN1都垂直于平面ABCD,由线面垂直的性质定理,可知MM1NN1,易知平面M1N1NM平面ACC1A1,由面面平行的性质定理可知,M1N1AC,设DM1DN1x,则0x1

    在直角梯形MM1N1N中,MN2(x)2(12x)26,当x时,MN取得最小值为]

    15.如图在棱长为1的正方体ABCD­A1B1C1D1EBC的中点.

    (1)B1B上是否存在一点P使D1P平面B1AE?

    (2)在平面AA1B1B上是否存在一点N使D1N平面B1AE?

    [] (1)如图,以D为坐标原点,分别以DADCDD1所在直线为x轴、y轴、z轴建立空间直角坐标系,则点A(100)EB1(111)D1(001)(0,-1,-1).假设存在点P(11z)满足题意,于是(11z1)

    所以所以解得矛盾.

    故在B1B上不存在点P使D1P平面B1AE

    (2)假设在平面AA1B1B上存在点N,使D1N平面B1AE

    N(1yz),则

    因为(1yz1),所以解得

    故平面AA1B1B上存在点N,使D1N平面B1AE

     

    相关试卷

    高中数学北师大版 (2019)选择性必修 第一册4.3 用向量方法研究立体几何中的度量关系第二课时达标测试: 这是一份高中数学北师大版 (2019)选择性必修 第一册4.3 用向量方法研究立体几何中的度量关系第二课时达标测试,共8页。

    高中数学北师大版 (2019)选择性必修 第一册4.3 用向量方法研究立体几何中的度量关系课后练习题: 这是一份高中数学北师大版 (2019)选择性必修 第一册4.3 用向量方法研究立体几何中的度量关系课后练习题,共11页。试卷主要包含了[2023江苏宝应高二期中]等内容,欢迎下载使用。

    高中数学北师大版 (2019)选择性必修 第一册4.2 用向量方法讨论立体几何中的位置关系课时训练: 这是一份高中数学北师大版 (2019)选择性必修 第一册4.2 用向量方法讨论立体几何中的位置关系课时训练,共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        高中数学第三章空间向量与立体几何3.4.2用向量方法研究立体几何中的位置关系课后素养训练含解析北师大版选择性必修第一册
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map