

所属成套资源:高中数学课后素养训练含解析北师大版选择性必修第一册专题
高中数学北师大版 (2019)选择性必修 第一册1.1 条件概率的概念当堂检测题
展开
这是一份高中数学北师大版 (2019)选择性必修 第一册1.1 条件概率的概念当堂检测题,共5页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
课后素养落实(三十七) 条件概率的概念(建议用时:40分钟)一、选择题1.已知P(B|A)=,P(A)=,则P(AB)等于( )A. B. C. D.C [由P(B|A)=得P(AB)=P(B|A)·P(A)=×=.]2.将三颗骰子各掷一次,记事件A表示“三个点数都不相同”,事件B表示“至少出现一个3点”,则概率P(A|B)等于( )A. B. C. D.C [事件B发生的基本事件个数是n(B)=6×6×6-5×5×5=91,事件A,B同时发生的基本事件个数为n(AB)=3×5×4=60.∴P(A|B)==.]3.甲、乙等4人参加4×100米接力赛,在甲不跑第一棒的条件下,乙不跑第二棒的概率是( )A. B. C. D.D [甲不跑第一棒共有A·A=18(种)情况,甲不跑第一棒且乙不跑第二棒共有两类:(1)乙跑第一棒,共有A=6(种)情况;(2)乙不跑第一棒,共有A·A·A=8(种)情况,∴甲不跑第一棒的条件下,乙不跑第二棒的概率为=.]4.盒中装有10只乒乓球,其中6只新球,4只旧球,不放回地依次取出2个球使用,在第一次摸出新球的条件下,第二次也取到新球的概率为( )A. B. C. D.C [把问题看成用10个不同的球排前两位,第一次为新球的基本事件数为6×9=54,两次均为新球的基本事件数为A=30,所以在第一次摸到新球条件下,第二次也摸到新球的概率为=.]5.一个家庭有两个小孩,假设生男生女是等可能的,已知这个家庭有一个是女孩的条件下,这时另一个也是女孩的概率是( )A. B. C. D.D [一个家庭中有两个小孩只有4种可能:(男,男),(男,女),(女,男),(女,女).记事件A为“其中一个是女孩”,事件B为“另一个是女孩”,则A={(男,女),(女,男),(女,女)},B={(男,女),(女,男),(女,女)},AB={(女,女)}.于是可知P(A)=,P(AB)=.问题是求在事件A发生的情况下,事件B发生的概率,即求P(B|A),由条件概率公式,得P(B|A)==.]二、填空题6.抛掷骰子2次,每次结果用(x1,x2)表示,其中x1,x2分别表示第一次、第二次骰子的点数.若设A={(x1,x2)|x1+x2=10},B={(x1,x2)|x1>x2}.则P(B|A)=________. [∵P(A)==,P(AB)=,∴P(B|A)===.]7.有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取一粒,则这粒种子能成长为幼苗的概率为________.0.72 [设“种子发芽”为事件A,“种子成长为幼苗”为事件AB(发芽,又成活为幼苗),出芽后的幼苗成活率为:P(B|A)=0.8,P(A)=0.9.根据条件概率公式P(AB)=P(B|A)·P(A)=0.8×0.9=0.72,即这粒种子能成长为幼苗的概率为0.72.]8.抛掷红、蓝两颗骰子,设事件A为“蓝色骰子的点数为3或6”,事件B为“两颗骰子的点数之和大于8”.当蓝色骰子的点数为3或6时,两枚骰子的点数之和大于8的概率是________. [设x为掷红骰子得的点数,y为掷蓝骰子得的点数,则所有可能的事件与(x,y)建立对应关系,由题意作图(如图所示).依题意P(A)==,P(AB)=.所以P(B|A)===.]三、解答题9.甲、乙两个袋子中,各放有大小、形状和个数相同的小球若干.每个袋子中标号为0的小球为1个,标号为1的2个,标号为2的n个.从一个袋子中任取两个球,取到的标号都是2的概率是.(1)求n的值;(2)从甲袋中任取两个球,已知其中一个的标号是1的条件下,求另一个标号也是1的概率.[解] (1)由题意得:==,解得n=2.(2)记“其中一个标号是1”为事件A,“另一个标号是1”为事件B,所以P(B|A)===.10.任意向x轴上(0,1)这一区间内掷一个点,问:(1)该点落在区间内的概率是多少?(2)在(1)的条件下,求该点落在内的概率.[解] 由题意知,任意向(0,1)这一区间内掷一点,该点落在(0,1)内哪个位置是等可能的,令A=,由几何概率的计算公式可知(1)P(A)==.(2)令B=,则AB=,P(AB)==.故在A的条件下B发生的概率为P(B|A)===.11.已知一种元件的使用寿命超过1年的概率为0.8,超过2年的概率为0.6,若一个这种元件使用到1年时还未失效,则这个元件使用寿命超过2年的概率为( )A.0.75 B.0.6 C.0.52 D.0.48A [设“一个这种元件使用超过1年”为事件A,“使用超过2年”为事件B,则P(A)=0.8,P(AB)=0.6,则这个元件在使用到1年时还未失效的前提下,这种元件使用寿命超过2年的概率为P(B|A)===0.75.故选A.]12.已知盒中装有3只螺口灯泡与7只卡口灯泡,这些灯泡的外形与功率都相同且灯口向下放着,现需要一只卡口灯泡,电工师傅每次从中任取一只且不放回,则在他第1次取到的是螺口灯泡的条件下,第2次取到的是卡口灯泡的概率为( )A. B. C. D.D [法一:设事件A为“第1次取到的是螺口灯泡”,事件B为“第2次取到的是卡口灯泡”,则P(A)=,P(AB)=×=,则所求概率为P(B|A)===.法二:第1次取到螺口灯泡后还剩余9只灯泡,其中有7只卡口灯泡,故第2次取到卡口灯泡的概率为=.]13.(多选题)下列说法正确的是( )A.P(B|A)<P(AB)B.P(B|A)=是可能的C.0≤P(B|A)≤1D.P(A|A)=1BCD [由条件概率公式P(B|A)=及0<P(A)≤1知P(B|A)≥P(AB),故A选项错误;当事件A包含事件B时,有P(AB)=P(B),此时P(B|A)=,故B选项正确;C,D选项正确.]14.(一题两空)从编号为1,2,…,10的10个大小相同的球中任取4个.(1)选出球的最大号码为6的概率为________.(2)已知选出4号球的条件下,选出球的最大号码为6的概率为________. [(1)令事件A={选出的4个球中含4号球},B={选出的4个球中最大号码为6}.则P(B)==.(2)法一:依题意知P(A)=,P(AB)=,∴P(B|A)===.法二:依题意知n(A)=C=84,n(AB)=C=6,∴P(B|A)===.]15.已知1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机从1号箱中取出一球放入2号箱,然后从2号箱中随机取出一球,则两次都取到红球的概率是( )A. B. C. D.C [设“从1号箱取到红球”为事件A,“从2号箱取到红球”为事件B.由题意,P(A)==,P(B|A)==,所以P(AB)=P(B|A)·P(A)=×=,所以两次都取到红球的概率为.]
相关试卷
这是一份数学选择性必修 第一册5 正态分布同步训练题,共4页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2021学年4.2 超几何分布课时练习,共5页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份北师大版 (2019)选择性必修 第一册4.1 二项分布随堂练习题,共5页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。