年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022版江苏高考数学一轮复习讲义:第10章 第7节 离散型随机变量的均值与方差、正态分布 Word版含答案学案

    2022版江苏高考数学一轮复习讲义:第10章 第7节 离散型随机变量的均值与方差、正态分布 Word版含答案学案第1页
    2022版江苏高考数学一轮复习讲义:第10章 第7节 离散型随机变量的均值与方差、正态分布 Word版含答案学案第2页
    2022版江苏高考数学一轮复习讲义:第10章 第7节 离散型随机变量的均值与方差、正态分布 Word版含答案学案第3页
    还剩14页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022版江苏高考数学一轮复习讲义:第10章 第7节 离散型随机变量的均值与方差、正态分布 Word版含答案学案

    展开

    这是一份2022版江苏高考数学一轮复习讲义:第10章 第7节 离散型随机变量的均值与方差、正态分布 Word版含答案学案,共17页。
    第七节 离散型随机变量的均值与方差、正态分布
    [最新考纲] 1.理解取有限个值的离散型随机变量的均值、方差的概念.2.会求简单离散型随机变量的均值、方差,并能利用离散型随机变量的均值、方差概念解决一些简单实际问题.3.借助直观直方图认识正态分布曲线的特点及曲线所表示的意义.


    1.离散型随机变量的分布列、均值与方差
    一般地,若离散型随机变量X的分布列为
    X
    x1
    x2

    xi

    xn
    P
    p1
    p2

    pi

    pn
    (1)均值:称E(X)=x1p1+x2p2+…+xipi+…+xnpn为随机变量X的均值或数学期望,它反映了离散型随机变量取值的平均水平.
    (2)方差:称D(X)=[xi-E(X)]2pi为随机变量X的方差,它刻画了随机变量X与其均值E(X)的平均偏离程度,其算术平方根为随机变量X的标准差.
    2.均值与方差的性质
    (1)E(aX+b)=aE(X)+b.
    (2)D(aX+b)=a2D(X)(a,b为常数).
    3.两点分布与二项分布的均值、方差

    均值
    方差
    变量X服从两点分布
    E(X)=p
    D(X)=p(1-p)
    X~B(n,p)
    E(X)=np
    D(X)=np(1-p)
    4.正态分布
    (1)正态曲线的特点:
    ①曲线位于x轴上方,与x轴不相交;
    ②曲线是单峰的,它关于直线x=μ对称;
    ③曲线在x=μ处达到峰值;
    ④曲线与x轴之间的面积为1;
    ⑤当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x轴平移;
    ⑥当μ一定时,曲线的形状由σ确定,σ越小,曲线越“瘦高”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散.
    (2)正态分布的三个常用数据
    ①P(μ-σ<X≤μ+σ)=0.682 6;
    ②P(μ-2σ<X≤μ+2σ)=0.954 4;
    ③P(μ-3σ<X≤μ+3σ)=0.997 4.

    1.均值与方差的关系:D(X)=E(X2)-E2(X).
    2.超几何分布的均值:若X服从参数为N,M,n的超几何分布,则E(X)=.

    一、思考辨析(正确的打“√”,错误的打“×”)
    (1)离散型随机变量的各个可能值表示的事件是彼此互斥的.
    (  )
    (2)若X~N(μ,σ2),则μ,σ2分别表示正态分布的均值和方差.
    (  )
    (3)随机变量的均值是常数,样本的平均值是随机变量.(  )
    (4)随机变量的方差和标准差都反映了随机变量取值偏离均值的平均程度,方差或标准差越小,则偏离均值的平均程度越小. (  )
    [答案](1)√ (2)√ (3)× (4)√
    二、教材改编
    1.已知X的分布列为
    X
    -1
    0
    1
    P


    a
    设Y=2X+3,则E(Y)的值为(  )
    A.    B.4    C.-1    D.1
    A [由概率分布列的性质可知:++a=1,
    ∴a=.
    ∴E(X)=(-1)×+0×+1×=-.
    ∴E(Y)=3+2E(X)=3-=.]
    2.若随机变量X满足P(X=c)=1,其中c为常数,则D(X)的值为 .
    0 [∵P(X=c)=1,∴E(X)=c×1=c,
    ∴D(X)=(c-c)2×1=0.]
    3.已知随机变量X服从正态分布N(3,1),且P(X>2c-1)=P(X2c-1)=P(X

    相关学案

    (新高考)高考数学一轮复习学案10.7《离散型随机变量的均值与方差、正态分布》(含详解):

    这是一份(新高考)高考数学一轮复习学案10.7《离散型随机变量的均值与方差、正态分布》(含详解),共17页。学案主要包含了知识梳理,教材衍化等内容,欢迎下载使用。

    高考数学统考一轮复习第10章计数原理概率随机变量及其分布第7节离散型随机变量的均值与方差正态分布学案:

    这是一份高考数学统考一轮复习第10章计数原理概率随机变量及其分布第7节离散型随机变量的均值与方差正态分布学案,共11页。

    人教版高考数学一轮复习第11章计数原理概率随机变量及其分布第8节离散型随机变量的均值与方差正态分布学案理含解析:

    这是一份人教版高考数学一轮复习第11章计数原理概率随机变量及其分布第8节离散型随机变量的均值与方差正态分布学案理含解析,共9页。学案主要包含了疑误辨析,走进教材,易错自纠等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map