终身会员
搜索
    上传资料 赚现金
    高中数学人教B版选修1-1 第2章 圆锥曲线与方程章末复习提升 课件(27张)
    立即下载
    加入资料篮
    高中数学人教B版选修1-1 第2章 圆锥曲线与方程章末复习提升  课件(27张)01
    高中数学人教B版选修1-1 第2章 圆锥曲线与方程章末复习提升  课件(27张)02
    高中数学人教B版选修1-1 第2章 圆锥曲线与方程章末复习提升  课件(27张)03
    高中数学人教B版选修1-1 第2章 圆锥曲线与方程章末复习提升  课件(27张)04
    高中数学人教B版选修1-1 第2章 圆锥曲线与方程章末复习提升  课件(27张)05
    高中数学人教B版选修1-1 第2章 圆锥曲线与方程章末复习提升  课件(27张)06
    高中数学人教B版选修1-1 第2章 圆锥曲线与方程章末复习提升  课件(27张)07
    高中数学人教B版选修1-1 第2章 圆锥曲线与方程章末复习提升  课件(27张)08
    还剩19页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中数学人教版新课标B选修1-1第二章 圆锥曲线与方程综合与测试复习ppt课件

    展开
    这是一份高中数学人教版新课标B选修1-1第二章 圆锥曲线与方程综合与测试复习ppt课件,共27页。PPT课件主要包含了解析答案,答案B,∵c2=a2+b2,得a=3故填3,课堂小结等内容,欢迎下载使用。

    知识网络 整体构建
    要点归纳 主干梳理
    方法总结 思想构建
    知识网络 整体构建
    要点归纳 主干梳理
    1.能够熟练使用直接法、待定系数法、定义法求椭圆方程;能够利用“坐标法”研究椭圆的基本性质;能够利用数形结合思想、分类讨论思想、参数法解决椭圆中的有关问题.2.能够根据所给的几何条件熟练地求出双曲线方程,并能灵活运用双曲线定义、参数间的关系,解决相关问题;准确理解参数a、b、c、e的关系、渐近线及其几何意义,并灵活运用.3.会根据方程形式或焦点位置判断抛物线的标准方程的类型;会根据抛物线的标准方程确定其几何性质,以及会由几何性质确定抛物线的方程.了解抛物线的一些实际应用.
    方法总结 思想构建
    1.数形结合思想“数形结合”指的是在处理数学问题时,能够将抽象的数学语言与直观的几何图形有机结合起来思索,促使抽象思维和形象思维的和谐结合,通过对规范图形或示意图形的观察分析,化抽象为直观,化直观为精确,从而使问题得到解决.判断直线与圆锥曲线的位置关系、求最值等问题,可以结合图形,运用数形结合思想,化抽象为具体,使问题变得简单.
    例1 双曲线 =1(a>0,b>0)的左、右焦点分别为F1,F2,若P为双曲线上一点,且|PF1|=2|PF2|,则双曲线离心率的取值范围为(  )A.(1,3) B.(1,3]C.(3,+∞) D.[3,+∞)
    解析 如图所示,由|PF1|=2|PF2|知P在双曲线的右支上,则|PF1|-|PF2|=2a,又|PF1|=2|PF2|,∴|PF1|=4a,|PF2|=2a,
    ∵0<∠F1PF2≤π,
    且当点P是双曲线的顶点时,∠F1PF2=π,∴-1≤cs∠F1PF2<1,
    跟踪训练1 抛物线y2=2px(p>0)上有A(x1,y1),B(x2,y2),C(x3,y3)三点,F是它的焦点,若|AF|,|BF|,|CF|成等差数列,则(  )A.x1,x2,x3成等差数列B.y1,y2,y3成等差数列C.x1,x3,x2成等差数列D.y1,y3,y2成等差数列解析 如图,过A,B,C分别作准线的垂线,垂足分别为A′,B′,C′,由抛物线定义知:|AF|=|AA′|,|BF|=|BB′|,|CF|=|CC′|.∵2|BF|=|AF|+|CF|,
    ∴2|BB′|=|AA′|+|CC′|.
    2.分类讨论思想分类讨论思想是指当所给的对象不能进行统一研究时,我们就需要对研究的对象进行分类,然后对每一类进行研究,得出每一类的结论,最后综合各类的结果得到整个问题的结果.如曲线方程中含有的参数的取值范围不同,对应的曲线也不同,这时要讨论字母的取值范围,有时焦点位置也要讨论,直线的斜率是否存在也需要讨论.
    跟踪训练2 求适合下列条件的椭圆的标准方程.(1)椭圆的长轴长是短轴长的2倍,且过点P(2,-6);
    由已知得a=2b. ①
    由①②得a2=148,b2=37或a2=52,b2=13.
    解 当焦点在x轴上时,∵椭圆过点P(3,0),∴a=3.
    ∴b2=a2-c2=3.
    当焦点在y轴上时,∵椭圆过点P(3,0),∴b=3.
    3.函数与方程思想圆锥曲线中的许多问题,若能运用函数与方程的思想去分析,则往往能较快地找到解题的突破口.用函数思想解决圆锥曲线中的有关定值、最值问题,最值问题是高中数学中常见的问题,在圆锥曲线问题中也不例外,而函数思想是解决最值问题最有利的武器.我们通常可用建立目标函数的方法解有关圆锥曲线的最值问题.方程思想是从分析问题的数量关系入手,通过联想与类比,将问题中的条件转化为方程或方程组,然后通过解方程或方程组使问题获解,方程思想是高中数学中最基本、最重要的思想方法之一,在高考中占有非常重要的地位.在求圆锥曲线方程、直线与圆锥曲线的位置关系的问题中经常利用方程或方程组来解决.
    解 方法一 设A(x1,y1),B(x2,y2),代入椭圆方程并作差,得a(x1+x2)(x1-x2)+b(y1+y2)(y1-y2)=0.①
    直线x+y-1=0的斜率k=-1.
    ∴|x2-x1|=2.
    联立ax2+by2=1与x+y-1=0可得(a+b)x2-2bx+b-1=0.
    且由已知得x1,x2是方程(a+b)x2-2bx+b-1=0的两根,
    得(a+b)x2-2bx+b-1=0.
    且直线AB的斜率k=-1,
    4.转化与化归思想将所研究的对象在一定条件下转化并归结为另一种研究对象的思想方法称之为转化与化归思想.一般将有待解决的问题进行转化,使之成为大家熟悉的或容易解决的问题模式.转化与化归思想在圆锥曲线中经常应用,如把直线与圆锥曲线的位置关系问题转化为方程组的解的个数问题,把求参数的取值范围问题转化为解不等式(组)问题,把陌生的问题转化为熟悉的问题,需要注意转化的等价性.
    例4 已知点A(4,-2),F为抛物线y2=8x的焦点,点M在抛物线上移动,当|MA|+|MF|取最小值时,点M的坐标为(  )
    解析 过点M作准线l的垂线,垂足为E,由抛物线定义知|MF|=|ME|.当点M在抛物线上移动时,|MF|+|MA|的值在变化,显然M移到M′,AM′∥Ox时,A,M,E共线,此时|ME|+|MA|最小,
    (1)求点Q(x,y)的轨迹C的方程;
    (2)设曲线C与直线y=kx+m相交于不同的两点M、N,又点A(0,-1),当|AM|=|AN|时,求实数m的取值范围.
    由于直线与椭圆有两个不同的交点,
    ∴Δ>0,即m2<3k2+1.①(ⅰ)当k≠0时,设弦MN的中点为P(xP,yP),xM、xN分别为点M、N的横坐标,
    又|AM|=|AN|,∴AP⊥MN.
    将②代入①得2m>m2,解得0(ⅱ)当k=0时,|AM|=|AN|,∴AP⊥MN,m2<3k2+1即为m2<1,解得-1当k=0时,m的取值范围是(-1,1).
    1.圆锥曲线的定义是圆锥曲线问题的根本,利用圆锥曲线的定义解题是考查圆锥曲线的一个重要命题点.2.圆锥曲线的标准方程是用代数方法研究圆锥曲线的几何性质的基础,对圆锥曲线标准方程的考查方式有两种:一是在解答题中作为试题的入口进行考查;二是在选择题和填空题中结合圆锥曲线的简单几何性质进行考查.3.虽然考纲中没有直接要求关于直线与圆锥曲线相结合的知识,但直线与圆锥曲线是密不可分的,如双曲线的渐近线、抛物线的准线,圆锥曲线的对称轴等都是直线.考试不但不回避直线与圆锥曲线,而且在试题中进行重点考查,考查方式既可以是选择题、填空题,也可以是解答题.
    相关课件

    人教版新课标B选修1-13.3.3导数的实际应用图文ppt课件: 这是一份人教版新课标B选修1-13.3.3导数的实际应用图文ppt课件,共50页。PPT课件主要包含了优化问题,数学建模,利润最大问题,几何中的最值问题,点击右图进入等内容,欢迎下载使用。

    人教版新课标B选修1-13.3.3导数的实际应用集体备课课件ppt: 这是一份人教版新课标B选修1-13.3.3导数的实际应用集体备课课件ppt,共40页。PPT课件主要包含了函数的单调性与导数,分类讨论思想,点击右图进入等内容,欢迎下载使用。

    数学1.2.2“非“(否定)背景图ppt课件: 这是一份数学1.2.2“非“(否定)背景图ppt课件,共47页。PPT课件主要包含了p的否定,存在性,点击右图进入等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        高中数学人教B版选修1-1 第2章 圆锥曲线与方程章末复习提升 课件(27张)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map