中考数学压轴题剖析与精炼(含解析):14 几何变换
展开
这是一份中考数学压轴题剖析与精炼(含解析):14 几何变换,共68页。
14 几何变换问题
【考点1】平移变换问题
【例1】在平面直角坐标系中,将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,则点A′的坐标是( )
A.(﹣1,1) B.(﹣1,﹣2) C.(﹣1,2) D.(1,2)
【答案】A
【解析】
试题分析:已知将点A(1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,根据向左平移横坐标减,向上平移纵坐标加可得点A′的横坐标为1﹣2=﹣1,纵坐标为﹣2+3=1,即A′的坐标为(﹣1,1).故选A.
考点:坐标与图形变化-平移.
【变式1-1】如图,在平面直角坐标系中,将四边形向下平移,再向右平移得到四边形,已知,则点坐标为( )
A. B. C. D.
【答案】B
【解析】
【分析】
根据A和A1的坐标得出四边形ABCD先向下平移2个单位,再向右平移6个单位得到四边形,则B的平移方法与A点相同,即可得到答案.
【详解】
图形向下平移,纵坐标发生变化,图形向右平移,横坐标发生变化. A(-3,5)到A1(3,3)得向右平移3-(-3)=6个单位,向下平移5-3=2个单位.所以B(-4,3)平移后B1(2,1).
故选B.
【点睛】
此题考查图形的平移.,掌握平移的性质是解题关键
【变式1-2】如图,在平面直角坐标系中,已知的三个顶点坐标分别是
(1)将向上平移4个单位长度得到,请画出;
(2)请画出与关于轴对称的;
(3)请写出的坐标.
【答案】(1)如图所示:,即为所求;见解析;(2)如图所示:,即为所求;见解析;(3).
【解析】
【分析】
(1)直接利用平移的性质得出对应点位置进而得出答案;
(2)直接利用轴对称的性质得出对应点位置进而得出答案;
(3)利用所画图象得出对应点坐标.
【详解】
(1)如图所示:,即为所求;
(2)如图所示:,即为所求;
(3).
【点睛】
此题主要考查了轴对称变换以及平移变换,正确得出对应点位置是解题关键.
【考点2】轴对称变换问题(含折叠变换)
【例2】如图,在菱形中,,点分别在边上,将四边形沿翻折,使的对应线段经过顶点,当时,的值是_____.
【答案】.
【解析】
【分析】
延长交于点,进而利用翻折变换的性质得出,,,,,再利用菱形的性质得出,,,设,,利用勾股定理得出,再根据三角函数进行计算即可解答
【详解】
延长交于点,
∵将四边形沿翻折,
∴,,,,
∵四边形是菱形
∴,,
∵,
∴设,,
∴,
∴,
∵
∴
∴
∵,
∴
∴
∴
∴,
∴,
∴
故答案为:.
【点睛】
此题考查翻折变换,菱形的性质,三角函数,解题关键在于利用折叠的性质进行解答
【变式2-1】如图,将平行四边形纸片沿一条直线折叠,使点与点重合,点落在点处,折痕为.求证:
(1);
(2).
【答案】(1)见解析;(2)见解析.
【解析】
【分析】
(1)依据平行四边形的性质,即可得到,由折叠可得,,即可得到;
(2)依据平行四边形的性质,即可得出,,由折叠可得,,,即可得到,,进而得出.
【详解】
(1)四边形是平行四边形,
,
由折叠可得, ,
,
,
;
(2)四边形是平行四边形,
,,
由折叠可得,,,
,,
又,
.
【点睛】
本题考查了平行四边形的性质,折叠的性质,全等三角形的判定,熟练掌握平行四边形的性质以及折叠的性质是解题的关键.
【变式2-2】如图,已知等边△ABC的边长为8,点P是AB边上的一个动点(与点A、B不重合),直线l是经过点P的一条直线,把△ABC沿直线l折叠,点B的对应点是点B’.
(1)如图1,当PB=4时,若点B’恰好在AC边上,则AB’的长度为_____;
(2)如图2,当PB=5时,若直线l//AC,则BB’的长度为 ;
(3)如图3,点P在AB边上运动过程中,若直线l始终垂直于AC,△ACB’的面积是否变化?若变化,说明理由;若不变化,求出面积;
(4)当PB=6时,在直线l变化过程中,求△ACB’面积的最大值.
【答案】(1)4;(2)5;(3)面积不变,S△ACB’=;(4)24+4
【解析】
【分析】
(1)证明△APB′是等边三角形即可解决问题;
(2)如图2中,设直线l交BC于点E,连接B B′交PE于O,证明△PEB是等边三角形,求出OB即可解决问题;
(3)如图3中,结论:面积不变,证明B B′//AC即可;
(4)如图4中,当PB′⊥AC时,△ACB′的面积最大,设直线PB′交AC于点E,求出B′E即可解决问题.
【详解】
(1) 如图1,∵△ABC为等边三角形,
∴∠A=60°,AB=BC=CA=8,
∵PB=4,
∴PB′=PB=PA=4,
∵∠A=60°,
∴△APB′是等边三角形,
∴AB′=AP=4,
故答案为4;
(2)如图2,设直线l交BC于点E,连接B B′交PE于O,
∵PE∥AC,
∴∠BPE=∠A=60°,∠BEP=∠C=60°,
∴△PEB是等边三角形,
∵PB=5,B、B′关于PE对称,
∴BB′⊥PE,BB′=2OB,
∴OB=PB·sin60°=,
∴BB′=5,
故答案为5;
(3)如图3,结论:面积不变.
过点B作BE⊥AC于E,
则有BE=AB·sin60°=,
∴S△ABC==16,
∵B、B′关于直线l对称,
∴BB′⊥直线l,
∵直线l⊥AC,
∴AC//BB′,
∴S△ACB’=S△ABC=16;
(4)如图4,当B′P⊥AC时,△ACB′的面积最大,
设直线PB′交AC于E,
在Rt△APE中,PA=2,∠PAE=60°,
∴PE=PA·sin60°=,
∴B′E=B′P+PE=6+,
∴S△ACB最大值=×(6+)×8=24+4.
【点睛】
本题是几何变换综合题,考查了等边三角形的判定与性质,轴对称变换,解直角三角形,平行线的判定与性质等知识,理解题意,熟练掌握和灵活运用相关知识是解题的关键.
【考点3】旋转变换问题
【例3】(1)问题发现
如图1,△ACB和△DCE均为等腰直角三角形,∠ACB=90°,B,C,D在一条直线上.
填空:线段AD,BE之间的关系为 .
(2)拓展探究
如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,请判断AD,BE的关系,并说明理由.
(3)解决问题
如图3,线段PA=3,点B是线段PA外一点,PB=5,连接AB,将AB绕点A逆时针旋转90°得到线段AC,随着点B的位置的变化,直接写出PC的范围.
【答案】(1) AD=BE,AD⊥BE.(2) AD=BE,AD⊥BE.(3) 5-3≤PC≤5+3.
【解析】
【分析】
(1)根据等腰三角形性质证△ACD≌△BCE(SAS),得AD=BE,∠EBC=∠CAD,延长BE交AD于点F,由垂直定义得AD⊥BE.
(2)根据等腰三角形性质证△ACD≌△BCE(SAS),AD=BE,∠CAD=∠CBE,由垂直定义得∠OHB=90°,AD⊥BE;
(3)作AE⊥AP,使得AE=PA,则易证△APE≌△ACP,PC=BE,当P、E、B共线时,BE最小,最小值=PB-PE;当P、E、B共线时,BE最大,最大值=PB+PE,故5-3≤BE≤5+3.
【详解】
(1)结论:AD=BE,AD⊥BE.
理由:如图1中,
∵△ACB与△DCE均为等腰直角三角形,
∴AC=BC,CE=CD,
∠ACB=∠ACD=90°,
在Rt△ACD和Rt△BCE中
∴△ACD≌△BCE(SAS),
∴AD=BE,∠EBC=∠CAD
延长BE交AD于点F,
∵BC⊥AD,
∴∠EBC+∠CEB=90°,
∵∠CEB=AEF,
∴∠EAD+∠AEF=90°,
∴∠AFE=90°,即AD⊥BE.
∴AD=BE,AD⊥BE.
故答案为AD=BE,AD⊥BE.
(2)结论:AD=BE,AD⊥BE.
理由:如图2中,设AD交BE于H,AD交BC于O.
∵△ACB与△DCE均为等腰直角三角形,
∴AC=BC,CE=CD,∠ACB=∠ECD=90°,
∴ACD=∠BCE,
在Rt△ACD和Rt△BCE中
,
∴△ACD≌△BCE(SAS),
∴AD=BE,∠CAD=∠CBE,
∵∠CAO+∠AOC=90°,∠AOC=∠BOH,
∴∠BOH+∠OBH=90°,
∴∠OHB=90°,
∴AD⊥BE,
∴AD=BE,AD⊥BE.
(3)如图3中,作AE⊥AP,使得AE=PA,则易证△APE≌△ACP,
∴PC=BE,
图3-1中,当P、E、B共线时,BE最小,最小值=PB-PE=5-3,
图3-2中,当P、E、B共线时,BE最大,最大值=PB+PE=5+3,
∴5-3≤BE≤5+3,
即5-3≤PC≤5+3.
【点睛】
本题是几何变换综合题,考查了旋转的性质、等腰直角三角形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找三角形全等的条件,学会添加辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考压轴题.
【变式3-1】如图,△ABC在平面直角坐标系中,顶点的坐标分别为A(-4,4),B(-1,1),C(-1,4).
(1)画出与△ABC关于y轴对称的△A1B1C1.
(2)将△ABC绕点B逆时针旋转90°,得到△A2BC2,画两出△A2BC2.
(3)求线段AB在旋转过程中扫过的图形面积.(结果保留π)
【答案】(1)作图见解析;(2)作图见解析;(3)π.
【解析】
【分析】
(1)根据关于y轴对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可;
(2)利用网格特点和旋转的性质画出A、C的对应点A2、C2即可;
(3)线段AB在旋转过程中扫过的图形为扇形,然后根据扇形面积公式计算即可.
【详解】
解:(1)如图,△AlB1C1为所作.
(2)如图,△A2BC2为所作;
(3)AB==3,
所以线段AB在旋转过程中扫过的图形面积==π.
【点睛】
本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了扇形面积公式.
【变式3-2】如图①,在中,,,D是BC的中点.
小明对图①进行了如下探究:在线段AD上任取一点P,连接PB.将线段PB绕点P按逆时针方向旋转,点B的对应点是点E,连接BE,得到.小明发现,随着点P在线段AD上位置的变化,点E的位置也在变化,点E可能在直线AD的左侧,也可能在直线AD上,还可能在直线AD的右侧.请你帮助小明继续探究,并解答下列问题:
(1)当点E在直线AD上时,如图②所示.
① ;②连接CE,直线CE与直线AB的位置关系是 .
(2)请在图③中画出,使点E在直线AD的右侧,连接CE.试判断直线CE与直线AB的位置关系,并说明理由.
(3)当点P在线段AD上运动时,求AE的最小值.
【答案】(1)①50;②;(2);(3)AE的最小值.
【解析】
【分析】
(1)①利用等腰三角形的性质即可解决问题.②证明,,推出即可.
(2)如图③中,以P为圆心,PB为半径作⊙P.利用圆周角定理证明即可解决问题.
(3)因为点E在射线CE上运动,点P在线段AD上运动,所以当点P运动到与点A重合时,AE的值最小,此时AE的最小值.
【详解】
(1)①如图②中,
∵,,
∴,
②结论:.
理由:∵,,
∴,
∴,
∴,
∵AE垂直平分线段BC,
∴,
∴,
∵,,
∴,
∴,
∴.
故答案为50,.
(2)如图③中,以P为圆心,PB为半径作⊙P.
∵AD垂直平分线段BC,
∴,
∴,
∵,
∴ .
(3)如图④中,作于H,
∵点E在射线CE上运动,点P在线段AD上运动,
∴当点P运动到与点A重合时,AE的值最小,此时AE的最小值.
【点睛】
本题属于几何变换综合题,考查了等腰三角形的性质,平行线的判定,圆周角定理等知识,解题的关键是熟练掌握基本知识,灵活运用所学知识解决问题,学会利用辅助圆解决问题,属于中考压轴题.
【考点4】位似变换问题
【例4】如图,与是以坐标原点为位似中心的位似图形,若点,,则的面积为__.
【答案】18.
【解析】
【分析】
根据,的坐标得到位似比,继而得到A、C对应点的坐标,再用所在的矩形的面积减去顶点处的三角形面积即可求得答案.
【详解】
∵与是以坐标原点为位似中心的位似图形,
若点,,
∴位似比为:,
∵,,
∴,
∴的面积为:,
故答案为:18.
【点睛】
本题考查了位似变换以及三角形面积求法,正确得出对应点位置是解题关键.
【变式4-1】在平面直角坐标系中,三个顶点的坐标分别为.以原点为位似中心,把这个三角形缩小为原来的,得到,则点的对应点的坐标是__________.
【答案】或
【解析】
【分析】
根据位似图形的中心和位似比例即可得到点A的对应点C.
【详解】
解:以原点为位似中心,把这个三角形缩小为原来的,点的坐标为,
∴点的坐标为或,即或,
故答案为:或.
【点睛】
本题主要考查位似图形的对应点,关键在于原点的位似图形,要注意方向.
【变式4-2】如图,在方格纸中.
(1)请在方格纸上建立平面直角坐标系,使,,并求出点坐标;
(2)以原点为位似中心,相似比为2,在第一象限内将放大,画出放大后的图形;
(3)计算的面积.
【答案】(1)作图见解析;.(2)作图见解析;(3)16.
【解析】
分析:(1)直接利用A,C点坐标得出原点位置进而得出答案;
(2)利用位似图形的性质即可得出△A'B'C';
(3)直接利用(2)中图形求出三角形面积即可.
详解:(1)如图所示,即为所求的直角坐标系;B(2,1);
(2)如图:△A'B'C'即为所求;
(3)S△A'B'C'=×4×8=16.
点睛:此题主要考查了位似变换以及三角形面积求法,正确得出对应点位置是解题的关键.画位似图形的一般步骤为:①确定位似中心;②分别连接并延长位似中心和关键点;③根据位似比,确定位似图形的关键点;④顺次连接上述各点,得到放大或缩小的图形.
一、单选题
1.在平面直角坐标系中,点与点关于y轴对称,则( )
A., B., C., D.,
【答案】B
【解析】
【分析】
根据点关于y轴对称,其横坐标互为相反数,纵坐标相同即可得到答案.
【详解】
A,B关于y轴对称,则横坐标互为相反数,纵坐标相同,故选B
【点睛】
本题考查点坐标的轴对称,解题的关键熟练掌握点坐标的轴对称.
2.如图,点P(8,6)在△ABC的边AC上,以原点O为位似中心,在第一象限内将△ABC缩小到原来的,得到△A′B′C′,点P在A′C′上的对应点P′的的坐标为( )
A.(4,3) B.(3,4) C.(5,3) D.(4,4)
【答案】A
【解析】
【分析】
直接利用在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或−k,进而结合已知得出答案.
【详解】
∵点P(8,6)在△ABC的边AC上,以原点O为位似中心,在第一象限内将△ABC缩小到原来的,得到△A′B′C′,
∴点P在A′C′上的对应点P′的的坐标为:(4,3).
故选:A.
【点睛】
此题主要考查了位似变换,正确得出位似比是解题关键.
3.如图,将绕点逆时针旋转70°到的位置,若,则( )
A.45° B.40° C.35° D.30°
【答案】D
【解析】
【分析】
首先根据旋转角定义可以知道,而,然后根据图形即可求出.
【详解】
解:∵绕点逆时针旋转70°到的位置,
∴,
而,
∴
故选:D.
【点睛】
此题主要考查了旋转的定义及性质,其中解题主要利用了旋转前后图形全等,对应角相等等知识.
4.下列四个银行标志中,既是中心对称图形,又是轴对称图形的是( )
A. B. C. D.
【答案】C
【解析】
【分析】
根据轴对称图形和中心对称图形的概念逐一进行判断即可得.
【详解】
A、是轴对称图形,不是中心对称图形,故不符合题意;
B、是轴对称图形,不是中心对称图形,故不符合题意;
C、是轴对称图形,也是中心对称图形,故符合题意;
D、是轴对称图形,不是中心对称图形,故不符合题意,
故选C.
【点睛】
本题主要考查轴对称图形和中心对称图形,在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形;在平面内,如果把一个图形绕某个点旋转180°后,能与原图形重合,那么就说这个图形是中心对称图形.
5.如图,在直角坐标系中,已知菱形OABC的顶点A(1,2),B(3,3).作菱形OABC关于y轴的对称图形OA′B′C′,再作图形OA′B′C′关于点O的中心对称图形OA″B″C″,则点C的对应点C″的坐标是( )
A.(2,-1) B.(1,-2) C. (-2,1) D. (-2,-1)
【答案】A
【解析】
【分析】
先找出对应点,再用线段顺次连接作出图形,根据图形解答即可.
【详解】
如图,
.
故选A.
【点睛】
本题考查了轴对称作图及中心对称作图,熟练掌握轴对称作图及中心对称的性质是解答本题的关键,中心对称的性质:①关于中心对称的两个图形能够完全重合;②关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.
6.在平面直角坐标系中,将点向右平移个单位长度后得到的点的坐标为( )
A. B. C. D.
【答案】A
【解析】
【分析】
根据直角坐标系的坐标平移即可求解.
【详解】
一个点向右平移之后的点的坐标,纵坐标不变,横坐标加4,故选A
【点睛】
此题主要考查坐标的平移,解题的关键是熟知直角坐标系的特点.
7.点关于原点的对称点坐标是( )
A. B. C. D.
【答案】B
【解析】
【分析】
坐标系中任意一点,关于原点的对称点是,即关于原点的对称点,横纵坐标都变成相反数.
【详解】
根据中心对称的性质,得点关于原点的对称点的坐标为.
故选B.
【点睛】
本题考查了关于原点对称的点的坐标,关于原点的对称点,横纵坐标都变成相反数.
8.如图,以点O为位似中心,把放大为原图形的2倍得到,以下说法中错误的是( )
A. B.点C、点O、点C′三点在同一直线上
C. D.
【答案】C
【解析】
【分析】
直接利用位似图形的性质进而分别分析得出答案.
【详解】
∵以点O为位似中心,把放大为原图形的2倍得到,
∴,点C、点O、点C′三点在同一直线上,,
,
∴C选项错误,符合题意.
故选C.
【点睛】
此题主要考查了位似变换,正确把握位似图形的性质是解题关键.
9.如图所示,在平面直角坐标系中,已知点A(2,4),过点A作AB⊥x轴于点B.将△AOB以坐标原点O为位似中心缩小为原图形的,得到△COD,则CD的长度是( )
A.2 B.1 C.4 D.2
【答案】A
【解析】
【分析】直接利用位似图形的性质结合A点坐标可直接得出点C的坐标,即可得出答案.
【详解】∵点A(2,4),过点A作AB⊥x轴于点B,将△AOB以坐标原点O为位似中心缩小为原图形的,得到△COD,
∴C(1,2),则CD的长度是2,
故选A.
【点睛】本题主要考查了位似变换以及坐标与图形的性质,正确把握位似图形的性质是解题关键.
10.如图,点A的坐标是(-2,0),点B的坐标是(0,6),C为OB的中点,将△ABC绕点B逆时针旋转90°后得到.若反比例函数的图象恰好经过的中点D,则k的值是( )
A.9 B.12 C.15 D.18
【答案】C
【解析】
【分析】
作轴于证明≌,推出,,求出点坐标,再利用中点坐标公式求出点D坐标即可解决问题.
【详解】
解:作轴于.
∵,
∴,,
∴,
∵,
∴,
∴,,
∵点的坐标是,点的坐标是,
∴,,
∴,,
∴,
∴,
∵,
∴,
∵反比例函数的图象经过点,
∴.
故选:C.
【点睛】
本题考查反比例函数图形上的点的坐标特征,坐标与图形的变化旋转等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考选择题中的压轴题.
11.在数学拓展课上,小明发现:若一条直线经过平行四边形对角线的交点,则这条直线平分该平行四边形的面积. 如图是由5个边长为1的小正方形拼成的图形,是其中4个小正方形的公共顶点,小强在小明的启发下,将该图形沿着过点的某条直线剪一刀,把它剪成了面积相等的两部分,则剪痕的长度是( )
A. B. C. D.
【答案】D
【解析】
【分析】
根据中心对称的性质即可作出剪痕,根据三角形全等的性质即可证得EM=DN,利用勾股定理即可求得.
【详解】
如图,为剪痕,过点作于.
∵将该图形分成了面积相等的两部分,
∴经过正方形对角线的交点,
∴.
易证,
∴,
而,
∴.
在中, .
故选:D.
【点睛】
本题考查了图形的剪拼,中心对称的性质,勾股定理的应用,熟练掌握中心对称的性质是解题的关键.
12.如图,矩形中,与相交于点,,将沿折叠,点的对应点为,连接交于点,且,在边上有一点,使得的值最小,此时( )
A. B. C. D.
【答案】B
【解析】
【分析】
设BD与AF交于点M.设AB=a,AD=a,根据矩形的性质可得△ABE、△CDE都是等边三角形,利用折叠的性质得到BM垂直平分AF,BF=AB=a,DF=DA=a.解直角△BGM,求出BM,再表示DM,由△ADM∽△GBM,求出a=2,再证明CF=CD=2.作B点关于AD的对称点B′,连接B′E,设B′E与AD交于点H,则此时BH+EH=B′E,值最小.建立平面直角坐标系,得出B(3,2),B′(3,-2),E(0,),利用待定系数法求出直线B′E的解析式,得到H(1,0),然后利用两点间的距离公式求出BH=4,进而求出=.
【详解】
如图,设BD与AF交于点M.设AB=a,AD=a,
∵四边形ABCD是矩形,
∴∠DAB=90°,tan∠ABD=,
∴BD=AC==2a,∠ABD=60°,
∴△ABE、△CDE都是等边三角形,
∴BE=DE=AE=CE=AB=CD=a,
∵将△ABD沿BD折叠,点A的对应点为F,
∴BM垂直平分AF,BF=AB=a,DF=DA=a,
在△BGM中,∵∠BMG=90°,∠GBM=30°,BG=2,
∴GM=BG=1,BM=GM=,
∴DM=BD-BM=2a-,
∵矩形ABCD中,BC∥AD,
∴△ADM∽△GBM,
∴,即,
∴a=2,
∴BE=DE=AE=CE=AB=CD=2,AD=BC=6,BD=AC=4,
易证∠BAF=∠FAC=∠CAD=∠ADB=∠BDF=∠CDF=30°,
∴△ADF是等边三角形,
∵AC平分∠DAF,
∴AC垂直平分DF,
∴CF=CD=2,
作B点关于AD的对称点B′,连接B′E,设B′E与AD交于点H,则此时BH+EH=B′E,值最小.
如图,建立平面直角坐标系,
则A(3,0),B(3,2),B′(3,-2),E(0,),
易求直线B′E的解析式为y=-x+,
∴H(1,0),
∴BH==4,
∴=.
故选:B.
【点睛】
本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形的性质,解直角三角形,等边三角形、垂直平分线、相似三角形的判定与性质,待定系数法求直线的解析式,轴对称-最短路线问题,两点间的距离公式等知识.综合性较强,有一定难度.分别求出BH、CF的长是解题的关键.
13.如图,在平面直角坐标系中,将边长为1的正方形OABC绕点O顺时针旋转后得到正方形,依此方式,绕点O连续旋转2019次得到正方形,那么点的坐标是( )
A. B. C. D.
【答案】A
【解析】
【分析】
根据旋转的性质分别求出点A1、A2、A3、…的坐标,继而发现8次为一个循环,用2019除以8,看余数即可求得答案.
【详解】
四边形OABC是正方形,且,
,
将正方形OABC绕点O逆时针旋转后得到正方形,
∴点A1的横坐标为1,点A1的纵坐标为1,
,
继续旋转则,,A4(0,-1),A5,A6(-1,0),A7,A8(0,1),A9,……,
发现是8次一循环,所以…余3,
点的坐标为,
故选A.
【点睛】
本题考查了旋转的性质,规律题——点的坐标的变化规律,通过分析正确得出坐标的变化规律是解题的关键.
14.如图,△ABC中,AB=AC=2,∠B=30°,△ABC绕点A逆时针旋转α(0
相关试卷
这是一份中考数学压轴题剖析与精炼(含解析):18 创新型与新定义综合问题,共61页。
这是一份中考数学压轴题剖析与精炼(含解析):15 动点综合问题,共150页。
这是一份中考数学压轴题剖析与精炼(含解析):13 圆的有关位置关系,共78页。