北师大版九年级上册第四章 图形的相似7 相似三角形的性质课前预习课件ppt
展开1.理解并初步掌握相似三角形的周长比,面积比与相似比的关系.2.会运用相似三角形的性质解决简单的实际问题.
1.顺次连接三角形三边的中点,所成的三角形与原三角形对应边上的中线的比是( )
A.1∶2 B.2∶1 C.1∶4 D.4∶1
2.如图,DE∥BC,则△______∽△ ______ .若AD=3,BD=2,AF⊥BC,交DE于G,则AG∶AF= ______ ,△AGE∽△AFC,且它们的相似比为______
3.已知△ABC与△DEF相似且对应角平分线之比为2∶3,若△ABC的最长边为6,则△DEF的最长边为____ .
知识模块一 探索相似三角形对应线段的比
1.相似三角形的对应角_______,对应边______;2.相似三角形的___________、________________与_______________都等于相似比;3.相似三角形的周长之比等于______;相似多边形的面积之比等于____________.
问题1:如果△ABC∽△A′B′C′,相似比为2,那么△ABC与△A′B′C′的周长比是多少?面积比呢?
解:(1)∵△ABC∽△A′B′C′,
问题2:如果△ABC∽△A′B′C′,相似比为k,那么△ABC与△A′B′C′的周长比和面积比分别是多少?
证明:设△ABC∽△A1B1C1,相似比为k,
归纳结论:相似三角形的周长比等于相似比
证明:设△ABC∽△A′B′C′,相似比为k,
如图,分别作出△ABC和△A′B′C′的高AD和A′D′.
∵△ABC和△A′B′C′都是直角三角形,并且∠B=∠B′,
∴△ABD∽△A′B′D′.
∵△ABC∽△A′B′C′.
归纳结论:相似三角形面积比等于相似比的平方.
议一议:两个相似四边形的周长比等于相似比吗?面积比等于相似比的平方吗?两个相似五边形的周长比与面积比怎样呢?两个相似的n边形呢?
无论是三角形、四边形、还是多边形,都有相同的结论,所以可以推导出:相似多边形的周长比等于相似比,面积比等于相似比的平方.
知识模块二 相似三角形性质的应用
1.若△ABC∽△A′B′C′,相似比为1∶2,则△ABC与△A′B′C′的面积的比为( )
A.1∶2 B.2∶1 C.1∶4 D.4∶1
将△ABC沿BC方向平移得到△DEF,△ABC与△DEF重叠部分的面积是△ABC的面积的一半.已知BC=2,求△ABC平移的距离.
解:根据题意,可知EG∥AB.
∴∠GEC=∠B,∠EGC=∠A.
∴△GEC∽△ABC
即,△ABC平移的距离为
1.教材P110页习题4.12的第1题.答:相似,周长比为2∶1,面积比为4∶1.
2.教材P111页习题4.12的第2题.解:(1)∵AB=2DE,AC=2DF,∠BAC=∠EDF.∴△ABC∽△DEF,相似比为2∶1,∴中线AG与DH的比是2∶1;(2)△ABC与△DEF的面积比是4∶1.
1.下列命题中错误的是( )A.相似三角形的周长比等于对应中线的比B.相似三角形对应高的比等于相似比C.相似三角形的面积比等于相似比D.相似三角形对应角平分线的比等于相似比
2.把一个五边形改成和它相似的五边形,如果面积扩大到原来的49倍,那么对应的对角线扩大到原来的( )A.49倍 B.7倍 C.50倍 D.8倍
3.两个相似多边形的一组对应边分别为3cm和4.5cm,如果它们的面积和为78cm2,那么较大多边形的面积为( )A.46.8 cm2 B.42 cm2 C.52 cm2 D.54 cm2
4.若两个相似多边形的面积之比为1∶4,则它们的周长之比为( )
A.1∶4 B.1∶2 C.2∶1 D.4∶1
5.若两个三角形相似,且它们的最大边分别为6cm和8cm,它们的周长之和为35cm,则较小的三角形的周长为______.
6.两个相似三角形面积之比为2:7,较大三角形一边上的高为 ,则较小三角形的对应边上的高为_______.
7.两个相似多边形最长的的边分为10cm和25cm,它们的周长之差为60cm,则这两个多边形的周长分别为_____________.
8.在▱ABCD中,BE=2AE,若S△AEF=6,求SCDF.
解:∵四边形ABCD是平行四边形,∴DC=AB,DC∥AB,∴∠DCA=∠BAC,又∵∠CFD=∠AFE,∴△AFE∽△CFD,
∴S△CDF=9S△AEF=9×6=54.
相似三角形周长之比等于相似比
相似三角形面积之比等于相似比的平方
北师大版九年级上册第四章 图形的相似7 相似三角形的性质精品ppt课件: 这是一份北师大版九年级上册第四章 图形的相似7 相似三角形的性质精品ppt课件,文件包含47相似三角形的性质第二课时相似三角形的性质2教学课件pptx、第四章图形的相似与整理47相似三角形的性质第2课时教案内含练习docx等2份课件配套教学资源,其中PPT共16页, 欢迎下载使用。
2021学年7 相似三角形的性质集体备课课件ppt: 这是一份2021学年7 相似三角形的性质集体备课课件ppt,共21页。PPT课件主要包含了学习目标,相似比,都相似,新课讲解,1∶2,1∶3,相似比的平方,周长比,面积比,随堂即练等内容,欢迎下载使用。
初中数学北师大版九年级上册7 相似三角形的性质课文ppt课件: 这是一份初中数学北师大版九年级上册7 相似三角形的性质课文ppt课件,共19页。PPT课件主要包含了复习回顾,相似三角形性质定理,相似三角形,都等于相似比,小试牛刀,填一填,拓展训练1,拓展训练2,对应中线的比,对应角平分线的比等内容,欢迎下载使用。