

北师大版九年级上册2 矩形的性质与判定第1课时导学案
展开
这是一份北师大版九年级上册2 矩形的性质与判定第1课时导学案,共4页。学案主要包含了教学目标,知识梳理,重点探究等内容,欢迎下载使用。
一、教学目标:
1.掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系;(重点)
2.会运用矩形的概念和性质来解决有关问题.(难点)
二、知识梳理:
1.有______________的平行四边形叫做矩形.
2.生活中你见到过的矩形有________、________.
3.矩形是________的平行四边形,具有平行四边形的________性质.
4.矩形的________都是直角.
5.矩形的对角线________.
6.直角三角形斜边上的中线等于斜边的________.
三、重点探究:
探究点一:矩形的性质
【类型一】 矩形的四个角都是直角
如图,矩形ABCD中,点E在BC上,且AE平分∠BAC.若BE=4,AC=15,则△AEC的面积为( )
A.15
B.30
C.45
D.60
方法总结:矩形的四个角都是直角,常作为证明或求值的隐含条件.
【类型二】 矩形的对角线相等
如图所示,矩形ABCD的两条对角线相交于点O,∠AOD=60°,AD=2,则AC的长是( )
A.2
B.4
C.2eq \r(3)
D.4eq \r(3)
方法总结:矩形的两条对角线互相平分且相等,即对角线把矩形分成四个等腰三角形,当两条对角线的夹角为60°或120°时,图中有等边三角形,从而可以利用等边三角形的性质解题.
探究点二:直角三角形斜边上的中线等于斜边的一半
如图,已知BD,CE是△ABC不同边上的高,点G,F分别是BC,DE的中点,试说明GF⊥DE.
方法总结:在直角三角形中,遇到斜边中点常作斜边中线,进而可将问题转化为等腰三角形的问题,然后利用等腰三角形“三线合一”的性质解题.
探究点三:矩形的性质的应用
【类型一】 利用矩形的性质求有关线段的长度
如图,已知矩形ABCD中,E是AD上的一点,F是AB上的一点,EF⊥EC,且EF=EC,DE=4cm,矩形ABCD的周长为32cm,求AE的长.
方法总结:矩形的各角为直角,常作为全等的一个条件用来证三角形全等,可借助直角的条件解决直角三角形中的问题.
【类型二】 利用矩形的性质求有关角度的大小
如图,在矩形ABCD中,AE⊥BD于E,∠DAE:∠BAE=3:1,求∠BAE和∠EAO的度数.
方法总结:矩形的性质是证明线段相等或倍分、角的相等与求值及线段平行或垂直的重要依据.
【类型三】 利用矩形的性质求图形的面积
如图所示,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD面积的( )
A.eq \f(1,5) B.eq \f(1,4)
C.eq \f(1,3) D.eq \f(3,10)
方法总结:求阴影部分的面积时,当阴影部分不规则或比较分散时,通常运用割补法将阴影部分转化为较规则的图形,再求其面积.
【类型四】 矩形中的折叠问题
如图,将矩形ABCD沿着直线BD折叠,使点C落在C′处,BC′交AD于点E,AD=8,AB=4,求△BED的面积.
方法总结:矩形的折叠问题是常见的问题,本题的易错点是对△BED是等腰三角形认识不足,解题的关键是对折叠后的几何形状要有一个正确的分析.
课堂小测:
1.矩形具有一般平行四边形不具有的性质是( )
A.对边相互平行 B.对角线相等
C.对角线相互平分 D.对角相等
2.如果矩形的两条对角线所成的钝角是120°,那么对角线与矩形短边的长度之比为( )
A.3∶2 B.2∶1
C.1.5∶1 D.1∶1
3.如图,在矩形ABCD中,AB<BC,AC,BD相交于点O,则图中等腰三角形的个数是( )
A.8 B.6
C.4 D.2
4.如图,在Rt△ABC中,∠ACB=90°,D、E为AB、AC的中点.则下列结论中错误的是( )
A.CD=AD B.∠B=∠BCD
C.∠AED=90° D.AC=2DE
5.在直角三角形中,两条直角边的长分别为12和5,则斜边上的中线长为________.
6.矩形的一条对角线长10 cm,且两条对角线的一个夹角为60°,则矩形的宽为________cm.
7.如图,在矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE,垂足为F.求证:DF=DC.
相关学案
这是一份初中数学北师大版九年级上册2 矩形的性质与判定第3课时学案,共4页。学案主要包含了问题引入,基础训练,例题展示,课堂检测等内容,欢迎下载使用。
这是一份初中第一章 特殊平行四边形2 矩形的性质与判定第2课时导学案,共5页。学案主要包含了问题引入,基础训练,例题展示,课堂检测等内容,欢迎下载使用。
这是一份北师大版九年级上册2 矩形的性质与判定第1课时导学案,共5页。学案主要包含了问题引入,基础训练,例题展示等内容,欢迎下载使用。
