初中数学北师大版九年级上册3 正方形的性质与判定第1课时导学案
展开
这是一份初中数学北师大版九年级上册3 正方形的性质与判定第1课时导学案,共3页。学案主要包含了教学目标,知识梳理,重点探究等内容,欢迎下载使用。
1.理解并掌握矩形的判定方法;(重点)
2.能熟练掌握矩形的判定及性质的综合应用.(难点)
二、知识梳理:
1.有________相等并且有一个角是________的__________叫做正方形.
2.正方形既是________又是________,它既具有________的性质,又有________的性质.
3.正方形的________相等,都是________,________相等.
4.正方形的对角线________________________.
三、重点探究:
探究点一:对角线相等的平行四边形是矩形
如图所示,外面的四边形ABCD是矩形,对角线AC,BD相交于点O,里面的四边形MPNQ的四个顶点都在矩形ABCD的对角线上,且AM=BP=CN=DQ.求证:四边形MPNQ是矩形.
方法总结:在判断四边形的形状时,若已知条件中有对角线,可首先考虑能否用对角线的条件证明矩形.
探究点二:有三个角是直角的四边形是矩形
如图,GE∥HF,直线AB与GE交于点A,与HF交于点B,AC、BC、BD、AD分别是∠EAB、∠FBA、∠ABH、∠GAB的平分线,求证:四边形ADBC是矩形.
方法总结:矩形的判定方法和矩形的性质是相辅相成的,注意它们的区别和联系,此判定方法只要说明一个四边形有三个角是直角,则这个四边形就是矩形.
探究点三:有一个角是直角的平行四边形是矩形
如图所示,在△ABC中,D为BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD.连接BF.
(1)BD与DC有什么数量关系?请说明理由;
(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.
方法总结:本题综合考查了矩形和全等三角形的判定方法,明确有一个角是直角的平行四边形是矩形是解本题的关键.
课堂小测:
1.菱形,矩形,正方形都具有的性质是( )
A.对角线相等且互相平分 B.对角线相等且互相垂直平分
C.对角线互相平分 D.四条边相等,四个角相等
2.正方形面积为36,则对角线的长为( )
A.6 B.6eq \r(2) C.9 D.9eq \r(2)
3.如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为( )
A.14 B.15 C.16 D.17
4.如图,延长正方形ABCD的边BC至E,使CE=AC,连接AE交CD于F,则∠AFC=________°.
5.如图,正方形ABCD的对角线AC、BD交于点O,∠OCF=∠OBE.求证:OE=OF.
相关学案
这是一份初中数学3 正方形的性质与判定第2课时学案及答案,共5页。学案主要包含了问题引入,基础训练,例题展示,课堂检测等内容,欢迎下载使用。
这是一份北师大版九年级上册3 正方形的性质与判定第1课时导学案,共6页。学案主要包含了问题引入,基础训练,例题展示,课堂检测等内容,欢迎下载使用。
这是一份北师大版九年级上册3 正方形的性质与判定学案,共10页。