高中沪教版17.2频率与概率说课ppt课件
展开
这是一份高中沪教版17.2频率与概率说课ppt课件,共13页。PPT课件主要包含了投掷硬币的试验,抛硬币试验,频率与概率的关系,概率的意义等内容,欢迎下载使用。
虽然我们不能预先判断出现正面向上,还是反面向上。但是假定硬币均匀,直观上可以认为出现正面与反面的机会相等。即在大量试验中出现正面的频率接近于0.5。
历史上有些学者做过成千上万次的投掷硬币的试验。结果如下表:
如果要求每人投掷1000次,这时绝大多数频率会集中在0.5附近,和0.5有较大差距的频率值也会有,但这样的频率值很少。 而且随着投掷次数的增多,频率越来越明显地集中在0.5附近。
人们经过大量试验和实际经验的积累逐渐认识到:在多次重复试验中,同一事件发生的频率在某一数值附近摆动,而且随着试验次数的增加,一般摆动幅度越小,
频率呈现一定的稳定性,频率的稳定性揭示出随机事件发生的可能性有一定的大小。 事件的频率稳定在某一数值附近,我们就用这一数值表示事件发生的可能性大小。
(1)联系: 随着试验次数的增加, 频率会在概率的附近摆动,并趋于稳定. 在实际问题中,若事件的概率未知, 常用频率作为它的估计值.
(2)区别: 频率本身是随机的,在试验前不能确定, 做同样次数或不同次数的重复试验得到的事件的频率都可能不同. 而概率是一个确定数,是客观存在的,与每次试验无关.
例1. 为了确定某类种子的发芽率,从一大批种子中抽出若干批作发芽试验,其结果如下:
从以上的数据可以看出,这类种子的发芽率约为0.9.
例2.某市统计近几年新生儿出生数及其中男婴数(单位:人)如下:
(1)试计算男婴各年出生频率(精确到0.001);(2)该市男婴出生的概率约是多少?
(1)1999年男婴出生的频率为:
同理可求得2000年、2001年和2002年男婴出生的频率分别为:
0.521,0.512,0.512.
(2)各年男婴出生的频率在0.51~0.53之间,故该市男婴出生 的概率约是0.52.
像木棒有长度,土地有面积一样,概率是对随机事件发生的可能性大小的度量,它反映了随机事件发生的可能性的大小。但随机事件的概率大,并不表明它在每一次试验中一定能发生。概率的大小只能说明随机事件在一次试验中发生的可能性的大小,即随机性中含有的规律性。认识了这种随机性中的规律性,就使我们能比较准确地预测随机事件发生的可能性。
例2. 如果某种彩票的中奖概率为1/1000,那么买1000张这种彩票一定能中奖吗?
解:买1000张彩票相当于1000次试验,对于一次试验来说,其结果是随机的,即有可能中奖,也有可能不中奖,但这种随机性又呈现一定的规律性,“彩票的中奖概率为1/1000是指当试验次数相当大,即随着购买彩票的张数的增加,大约有1/1000的彩票中奖。
因此,买1000张彩票,即做1000次试验,其结果仍是随机的,可能一次也没有中奖,也可能中奖一次、二次、甚至多次。
例3.在生活中,我们有时要用抽签的方法来决定一件事情,例如5张票中有1张奖票,5个人按顺序从中各抽1张以决定谁得到其中的奖票,那么,先抽或是后抽(后抽人不知道先抽人抽出的结果)对各人来说公平吗?也就是说,各人抽到奖票的概率相等吗?
相关课件
这是一份高中数学沪教版高中三年级 第一学期16.5二项式原理图片ppt课件,共54页。PPT课件主要包含了误区警示等内容,欢迎下载使用。
这是一份数学高中三年级 第一学期16.2排列教学ppt课件,共34页。PPT课件主要包含了分类加法计数原理,分步乘法计数原理,所有不同排列的个数,答案C等内容,欢迎下载使用。
这是一份高中数学沪教版高中三年级 第二学期17.2频率与概率课文内容课件ppt,共7页。PPT课件主要包含了概率性质,古典概型公式,对立事件的概率,提出问题,随机事件的频率,判断下列说法正误,频率与概率的关系等内容,欢迎下载使用。