搜索
    上传资料 赚现金
    英语朗读宝

    专题16 以矩形为基础的图形的旋转变换问题(原卷版)

    专题16  以矩形为基础的图形的旋转变换问题(原卷版)第1页
    专题16  以矩形为基础的图形的旋转变换问题(原卷版)第2页
    专题16  以矩形为基础的图形的旋转变换问题(原卷版)第3页
    还剩7页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题16 以矩形为基础的图形的旋转变换问题(原卷版)

    展开

    这是一份专题16 以矩形为基础的图形的旋转变换问题(原卷版),共31页。主要包含了例题精讲,针对训练等内容,欢迎下载使用。
    两个长为2cm,宽为1cm的长方形,摆放在直线l上(如图①),CE=2cm,将长方形ABCD绕着点C顺时针旋转α角,将长方形EFGH绕着点E逆时针旋转相同的角度.
    (1)当旋转到顶点D、H重合时,连接AE、CG,求证:△AED≌△GCD(如图②).
    (2)当α=45°时(如图③),求证:四边形MHND为正方形.
    【针对训练】
    1、如图,有一矩形纸片ABCD,AB=6,AD=8,如图1,将纸片折叠使AB落在AD边上,B的对应点为B′,折痕为AE.如图2,再将△AB'E以B'E为折痕向右折叠,AE与CD交于点F.
    (1)求的值;[来源:学*科*网]
    (2)四边形EFDB′的面积为 ;
    (3)如图3,将△A′DF绕点D旋转得到△MDN,点N刚好落在B′E上,A′的对应点为M,F的对应点为N,求点A'到达点M所经过的距离.
    2、已知线段AB,如果将线段AB绕点A逆时针旋转90°得到线段AC,则称点C为线段AB关于点A的逆转点.点C为线段AB关于点A的逆转点的示意图如图1:
    (1)如图2,在正方形ABCD中,点 为线段BC关于点B的逆转点;
    (2)如图3,在平面直角坐标系xOy中,点P的坐标为(x,0),且x>0,点E是y轴上一点,点F是线段EO关于点E的逆转点,点G是线段EP关于点E的逆转点,过逆转点G,F的直线与x轴交于点H.
    ①补全图;
    ②判断过逆转点G,F的直线与x轴的位置关系并证明;
    ③若点E的坐标为(0,5),连接PF、PG,设△PFG的面积为y,直接写出y与x之间的函数关系式,并写出自变量x的取值范围.
    3、如图,△ABC是等腰直角三角形,∠ACB=90°,D为AC延长线上一点,连接DB,将DB绕点D逆时针旋转90°,得到线段DE,连接AE.
    (1)如图①,当CD=AC时,线段AB、AE、AD三者之间的数量关系式是AB+AE= AD.
    (2)如图②,当CD≠AC时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由.
    (3)当点D在射线CA上时,其他条件不变,(1)中结论是否成立?若成立,请说明理由;若不成立,请直接写出线段AB、AE、AD三者之间的数量关系式.
    4、如图,将△ABC绕点A逆时针旋转90°得到△ADE,将BC绕点C顺时针旋转90°得CG,DG交EC于O点
    (1)求证:DO=OG;
    (2)若∠ABC=135°,AC=2,求DG的长;
    (3)若∠ABC=90°,BC>AB,且=时,直接写出的值.
    5、如图乙,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,点P为射线BD,CE的交点.
    (1)如图甲,将△ADE绕点A旋转,当C、D、E在同一条直线上时,连接BD、BE,则下列给出的四个结论中,其中正确的是哪几个 .(回答直接写序号)
    ①BD=CE; ②BD⊥CE; ③∠ACE+∠DBC=45°; ④BE2=2(AD2+AB2)
    (2)若AB=6,AD=3,把△ADE绕点A旋转:
    ①当∠CAE=90°时,求PB的长;
    ②直接写出旋转过程中线段PB长的最大值和最小值.
    6、如图1,在等腰直角△ABC中,∠A=90°,AB=AC=3,在边AB上取一点D(点D不与点A,B重合),在边AC上取一点E,使AE=AD,连接DE.把△ADE绕点A逆时针方向旋转α(0°<α<360°),如图2.
    (1)请你在图2中,连接CE和BD,判断线段CE和BD的数量关系,并说明理由;
    (2)请你在图3中,画出当α=45°时的图形,连接CE和BE,求出此时△CBE的面积;
    (3)若AD=1,点M是CD的中点,在△ADE绕点A逆时针方向旋转的过程中,线段AM的最小值是 .
    7、综合与实践
    问题情境
    数学活动课上,老师让同学们以“三角形的旋转”为主题开展数学活动,△ABC和△DEC是两个全等的直角三角形纸片,其中∠ACB=∠DCE=90°,∠B=∠E=30°,AB=DE=4.
    解决问题
    (1)如图①,智慧小组将△DEC绕点C顺时针旋转,发现当点D恰好落在AB边上时,DE∥AC,请你帮他们证明这个结论;
    (2)缜密小组在智慧小组的基础上继续探究,连接AE、AD、BD,当△DEC绕点C继续旋转到如图②所示的位置时,他们提出S△BDC=S△AEC,请你帮他们验证这一结论是否正确,并说明理由;
    探索发现
    (3)如图③,勤奋小组在前两个小组的启发下,继续旋转△DEC,当B、A、E三点共线时,求BD的长;
    (4)在图①的基础上,写出一个边长比为1::2的三角形(可添加字母)
    8、已知△ABC和△BDE都是等腰直角三角形,∠ACB=∠BED=90°,AB=2BD,连接CE.
    (1)如图1,若点D在AB边上,点F是CE的中点,连接BF.当AC=4时,求BF的长;
    (2)如图2,将图1中的△BDE绕点B按顺时针方向旋转,使点D在△ABC的内部,连接AD,取AD的中点M,连接EM并延长至点N,使MN=EM,连接CN.求证:CN⊥CE.
    9、如图,已知点A (0,8),B (16,0),点P是x轴上的一个动点(不与原点O重合),连结AP,把△OAP沿着AP折叠后,点O落在点C处,连结PC,BC,设P(t,0).[来源:学。科。网Z。X。X。K]
    (1)如图1,当AP∥BC时,试判断△BCP的形状,并说明理由.
    (2)在点P的运动过程中,当∠PCB=90°时,求t的值.
    (3)如图2,过点B作BH⊥直线CP,垂足为点H,连结AH,在点P的运动过程中,是否存在AH=BC?若存在,求出t的值:若不存在,请说明理由.
    10、问题情境:
    数学活动课上,老师让同学们以“三角形的旋转”为主题开展数学活动,△ABC和△DEC是两个全等的直角三角形纸片,其中∠ACB=∠DCE=90°,∠B=∠E=30°,AB=DE=4.
    解决问题:
    (1)如图1,智慧小组将△DEC绕点C顺时针旋转,发现当点D恰好落在AB边上时,DE∥AC,请你帮他们证明这个结论;
    (2)缜密小组在智慧小组的基础上继续探究,当△DEC绕点C继续旋转到如图2所示的位置时,连接AE、AD、BD,他们提出S△BDC=S△AEC,请你帮他们验证这一结论是否正确,并说明理由.
    11、如图,△ABC中AB=AC=5,tan∠ACB=,点D为边BC上的一动点(不与点B、C重合),将线段AD绕点A顺时针旋转得AE,使∠DAE=∠BAC,DE与AB交于点F,连接BE.
    (1)求BC的长;
    (2)求证∠ABE=∠ABC;
    (3)当FB=FE时,求CD的长.
    12、(1)如图1,O是等边三角形ABC内一点,连接OA,OB,OC,且OA=3,OB=4,OC=5,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.
    填空:①旋转角为 °;
    ②线段OD的长是 ;
    ③∠BDC= °;
    (2)如图2,O是△ABC内一点,且∠ABC=90°,BA=BC.连接OA,OB,OC,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.当OA,OB,OC满足什么条件时,∠BDC=135°?请说明理由.
    13、在△ABC中,AC=BC,∠ACB=α,点D为直线BC上一动点,过点D作DF∥AC交直线AB于点F,将AD绕点D顺时针旋转α得到ED,ED交直线AB于点O,连接BE.
    (1)问题发现:
    如图1,α=90°,点D在边BC上,猜想:
    ①AF与BE的数量关系是 ;[来源:学+科+网]
    ②∠ABE= 度.
    (2)拓展探究:
    如图2,0°<α<90°,点D在边BC上,请判断AF与BE的数量关系及∠ABE的度数,并给予证明.
    (3)解决问题
    如图3,90°<α<180°,点D在射线BC上,且BD=3CD,若AB=8,请直接写出BE的长.
    13、如图1,在△ABC中,∠ACB=90°,AC=BC,D为AB上一点,连接CD,将CD绕点C顺时针旋转90°至CE,连接AE.
    (1)求证:△BCD≌△ACE;
    (2)如图2,连接ED,若CD=2,AE=1,求AB的长;
    (3)如图3,若点F为AD的中点,分别连接EB和CF,求证:CF⊥EB.
    14、如图1,在Rt△ABC中,∠B=90°,∠C=30°,BC=4,点D,E分别是边BC,AC的中点,连接DE.将△EDC绕点C按逆时针方向旋转,记旋转角为α.
    (1)问题发现
    ①当α=0°时,= ;
    ②当α=180°时,= .
    (2)拓展探究
    试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情形给出证明.
    (3)问题解决
    当△EDC旋转至DE∥AC时,请直接写出BD的长.
    15、(1)问题发现
    如图1,在Rt△ABC中,∠BAC=30°,∠ABC=90°,将线段AC绕点A逆时针旋转,旋转角α=2∠BAC,∠BCD的度数是 ;线段BD,AC之间的数量关系是 .
    (2)类比探究
    在Rt△ABC中,∠BAC=45°,∠ABC=90°,将线段AC绕点A逆时针旋转,旋转角α=2∠BAC,请问(1)中的结论还成立吗?
    (3)拓展延伸
    如图3,在Rt△ABC中,AB=2,AC=4,∠BAC=90°,若点P满足PB=PC,∠BPC=90°,请直接写出线段AP的长度.
    16、综合与实践
    问题情境
    数学活动课上,老师让同学们以“三角形平移与旋转”为主题开展数学活动,△ACD和△BCE是两个等边三角形纸片,其中,AC=5cm,BC=2cm.
    解决问题
    (1)勤奋小组将△ACD和△BCE按图1所示的方式摆放(点A,C,B在同一条直线上),连接AE,BD.发现AE=DB,请你给予证明;
    (2)如图2,创新小组在勤奋小组的基础上继续探究,将△BCE绕着点C逆时针方向旋转,当点E恰好落在CD边上时,求△ABC的面积;
    拓展延伸
    (3)如图3,缜密小组在创新小组的基础上,提出一个问题:“将△BCE沿CD方向平移acm,得到B'C'E',连接AB',B'C,当△AB'C恰好是以AB'为斜边的直角三角形时,求a的值.请你直接写出a的值.
    17、如图,有一矩形纸片ABCD,AB=6,AD=8,如图1,将纸片折叠使AB落在AD边上,B的对应点为B′,折痕为AE.如图2,再将△AB'E以B'E为折痕向右折叠,AE与CD交于点F.
    (1)求的值;
    (2)四边形EFDB′的面积为 ;
    (3)如图3,将△A′DF绕点D旋转得到△MDN,点N刚好落在B′E上,A′的对应点为M,F的对应点为N,求点A'到达点M所经过的距离.

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map