初中数学第一章 全等三角形综合与测试一课一练
展开2021-2022学年苏科版八年级数学上册《第1章全等三角形》单元能力达标测评(附答案)
一.选择题(共8小题,满分32分,每小题4分)
1.全等形是指两个图形( )
A.大小相等 B.完全重合 C.形状相同 D.以上都不对
2.下列说法不正确的是( )
A.如果两个图形全等,那么它们的形状和大小一定相同
B.面积相等的两个图形是全等图形
C.图形全等,只与形状、大小有关,而与它们的位置无关
D.全等三角形的对应边相等,对应角相等
3.如图,为了测量B点到河对面的目标A之间的距离,在B点同侧选择了一点C,测得∠ABC=75°,∠ACB=35°,然后在M处立了标杆,使∠CBM=75°,∠MCB=35°,得到△MBC≌△ABC,所以测得MB的长就是A,B两点间的距离,这里判定△MBC≌△ABC的理由是( )
A.SAS B.AAA C.SSS D.ASA
4.如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B到C的方向平移到△DEF的位置,AB=8,DO=3,平移距离为4,则阴影部分面积为( )
A.18 B.24 C.26 D.32
5.已知△ABC≌△A'B'C,∠A=40°,∠CBA=60°,A'C交边AB于P(点P不与A、B重合).BO、CO分别平分∠CBA,∠BCP,若m°<∠BOC<n°,则n﹣m的值为( )
A.20 B.40 C.60 D.100
6.如图,AB=14,AC=6,AC⊥AB,BD⊥AB,垂足分别为A、B.点P从点A出发,以每秒2个单位的速度沿AB向点B运动;点Q从点B出发,以每秒a个单位的速度沿射线BD方向运动.点P、点Q同时出发,当以P、B、Q为顶点的三角形与△CAP全等时,a的值为( )
A.2 B.3 C.2或3 D.2或
7.如图,已知AB⊥BD,CD⊥BD,AD=BC.判定Rt△ABD和Rt△CDB全等的依据是( )
A.AAS B.SAS C.ASA D.HL
8.如图,D为△ABC边BC上一点,AB=AC,∠BAC=56°,且BF=DC,EC=BD,则∠EDF等于( )
A.62° B.56° C.34° D.124°
二.填空题(共8小题,满分32分,每小题4分)
9.如图,若AB,CD相交于点E,若△ABC≌△ADE,且点B与点D对应,点C与点E对应,∠BAC=28°,则∠B的度数是 °.
10.在△ABC中,AD⊥BC于D,要用“HL“证明Rt△ADB≌Rt△ADC,则需添加的条件是 .
11.如图,直线L上有三个正方形a,b,c,若a,c的面积分别为1和9,则b的面积为 .
12.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=28°,∠2=30°,则∠3= .
13.如图,C是线段AB上的一点,△ACD和△BCE都是等边三角形,AE交CD于M,BD交CE于N,交AE于O,则①DB=AE;②∠AMC=∠DNC;③∠AOB=60°;④DN=AM;⑤△CMN是等边三角形.其中,正确的有 .
14.如图所示,∠E=∠F=90°,∠B=∠C,AE=AF,下列结论正确的是 .
A.∠1=∠2;B.BE=CF;C.△CAN≌△ABM;D.CD=DN.
15.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3= .
16.如图,直线a过正方形ABCD的顶点A,点B、D到直线a的距离分别为3、4,则正方形的边长为 .
三.解答题(共6小题,满分56分)
17.如图,已知△ABC和△CDE均是直角三角形,∠ACB=∠CED=90°,AC=CE,AB⊥CD于点F.
(1)求证:△ABC≌△CDE;
(2)若点B是EC的中点,DE=10cm,求AE的长.
18.如图,△ABC中,AB=AC,AD是BC边上的高,CE是AB边上的高,AE=CE.
求证:(1)△AEF≌△CEB;
(2)AF=2CD.
19.如图,已知点D、E是△ABC内两点,且∠BAE=∠CAD,AB=AC,AD=AE.
(1)求证:△ABD≌△ACE.
(2)延长BD、CE交于点F,若∠BAC=86°,∠ABD=20°,求∠BFC的度数.
20.如图,在△ABC和△ADE中,AB=AD,∠D=∠B,∠1=∠2.
求证:DE=BC.
21.如图,点M,N分别是正五边形ABCDE的边BC,CD上的点,且BM=CN,AM交BN于点P.
(1)求证:△ABM≌△BCN.
(2)求∠APN的度数.
22.如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.
(1)求证:AB=DC;
(2)试判断△OEF的形状,并说明理由.
参考答案
一.选择题(共8小题,满分32分,每小题4分)
1.解:能够完全重合的两个图形叫做全等形,
故选:B.
2.解:A、如果两个图形全等,那么它们的形状和大小一定相同,正确,不合题意;
B、面积相等的两个图形是全等图形,错误,符合题意;
C、图形全等,只与形状、大小有关,而与它们的位置无关,正确,不合题意;
D、全等三角形的对应边相等,对应角相等,正确,不合题意;
故选:B.
3.解:在△ABC和△MBC中,
∴△MBC≌△ABC(ASA),
故选:D.
4.解:由平移的性质可知,△ABC≌△DEF,
∴DE=AB=8,BE=4,S△ABC=S△DEF,
∴OE=DE﹣DO=8﹣3=5,
∴阴影部分的面积=S△ABC﹣S△OEC=S梯形ABEO=×(5+8)×4=26,
故选:C.
5.解:∵BO、CO分别平分∠ABC、∠PCB,
∴∠OBC=∠ABC,∠OCB=∠PCB,
∴∠BOC=180°﹣∠OBC﹣∠OCB=180°﹣(∠ABC+∠PCB),
=180°﹣(180°﹣∠BPC),
=90°+∠BPC=90°+(∠A+∠ACP),
=110°+∠ACP,
∵∠A=40°,∠CBA=60°,
∴∠ACB=180°﹣∠A﹣∠CBA=180°﹣40°﹣60°=80°,
∵P点在AB边上且不与A、B重合,
∴0°<∠ACP<80°,
∴0°<2∠BOC﹣220°<80°,
∴110°<∠BOC<150°,
∴m=110,n=150.
∴n﹣m=40.
故选:B.
6.解:当△CAP≌△PBQ时,则AC=PB,AP=BQ,
∵AC=6,AB=14,
∴PB=6,AP=AB﹣AP=14﹣6=8,
∴BQ=8,
∴8÷a=8÷2,
解得a=2;
当△CAP≌△QBP时,则AC=BQ,AP=BP,.
∵AC=6,AB=14,
∴BQ=6,AP=BP=7,
∴6÷a=7÷2,
解得a=;
由上可得a的值是2或,
故选:D.
7.解:∵AB⊥BD,CD⊥BD,
∴∠ABD=∠CDB=90°,
在Rt△ABD和Rt△CDB中,
,
∴Rt△ABD≌Rt△CDB(HL),
故选:D.
8.解:∵AB=AC,
∴∠B=∠C=(180°﹣∠BAC)=(180°﹣56°)=62°,
在△BFD和△EDC中,,
∴△BFD≌△EDC(SAS),
∴∠BFD=∠EDC,
∴∠FDB+∠EDC=∠FDB+∠BFD=180°﹣∠B=180°﹣62°=118°,
则∠EDF=180°﹣(∠FDB+∠EDC)=180°﹣118°=62°.
故选:A.
二.填空题(共8小题,满分32分,每小题4分)
9.解:∵△ABC≌△ADE,且点B与点D对应,点C与点E对应,
∴∠B=∠D,AC=AE,∠BAC=∠BAD,
∴∠ACE=∠AEC,
∵∠ACE+∠AEC+∠BAC=180°,∠BAC=28°,
∴∠ACE=∠AEC=(180°﹣∠BAC)=76°,∠BAD=28°,
∵∠D+∠CAD+∠ACE=180°,
∴∠D=180°﹣∠CAD﹣∠ACE=48°,
故答案为48.
10.解:添加条件:AB=AC,
∵AD⊥BC,
∴∠ADB=∠ADC=90°,
在Rt△ABD和Rt△ACD中
,
∴Rt△ABD≌Rt△ACD(HL),
故答案为:AB=AC.
11.解:由于a、b、c都是正方形,所以AC=CD,∠ACD=90°;
∵∠ACB+∠DCE=∠ACB+∠BAC=90°,
即∠BAC=∠DCE,
在△ACB和△CDE中,
,
∴△ACB≌△CDE(AAS),
∴AB=CE,BC=DE;
在Rt△ABC中,由勾股定理得:AC2=AB2+BC2=AB2+DE2,
即Sb=Sa+Sc=1+9=10,
∴b的面积为10,
故答案为:10.
12.解:∵∠BAC=∠DAE,
∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,
∴∠1=∠EAC,
在△BAD和△CAE中,
,
∴△BAD≌△CAE(SAS),
∴∠2=∠ABD=30°,
∵∠1=28°,
∴∠3=∠1+∠ABD=28°+30°=58°,
故答案为:58°.
13.解:∵∠ACD=∠BCE=60°,
∴∠DCE=60°,
在△ACE和△DCB中,
,
∴△ACE≌△DCB(SAS),
∴∠BDC=∠EAC,DB=AE,①正确;
∠CBD=∠AEC,
∵∠AOB=180°﹣∠OAB﹣∠DBC,
∴∠AOB=180°﹣∠AEC﹣∠OAB=120°,③错误;
在△ACM和△DCN中,
,
∴△ACM≌△DCN(ASA),
∴AM=DN,④正确;
∠AMC=∠DNC,②正确;
CM=CN,
∵∠MCN=60°,
∴△CMN是等边三角形,⑤正确;
故答案为:①②④⑤.
14.解:如图,
∵∠E=∠F=90°,∠B=∠C,AE=AF,
∴Rt△ABE≌Rt△ACF(AAS),
∴∠FAC=∠EAB,BE=CF,AB=AC,
∴∠1=∠2,
故A,B正确;
又∠B=∠C,∠CAN=∠BAM,
∴△ACN≌△ABM(ASA),
故C错误;
∵△ACN≌△ABM(ASA),
∴AN=AM,
∴MC=BN,
而∠B=∠C,∠CDM=∠BDN,
∴△DMC≌△DNB(AAS),
∴DC=DB,
∴DC≠DN,
故D错误.
故答案为:A,B;
15.解:∵∠BAC=∠DAE,
∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,
∴∠1=∠EAC,
在△BAD和△CAE中,
∴△BAD≌△CAE(SAS),
∴∠2=∠ABD=30°,
∵∠1=25°,
∴∠3=∠1+∠ABD=25°+30°=55°,
故答案为:55°.
16.解:在正方形ABCD中,AD=AB,
∵DF⊥AF,BE⊥AE,
∴∠AFD=∠AEB=90°,∠ADF+∠DAF=90°,
∵∠DAF+∠BAE=90°,
∴∠ADF=∠BAE,
在Rt△AFD和Rt△BEA中,
,
∴Rt△AFD≌Rt△BEA(AAS),
∴DF=AE=3,AF=BE=1,
在Rt△BEA中,
AB=5.
故答案为:5.
三.解答题(共6小题,满分56分)
17.(1)证明:∵AB⊥CD,
∴∠FAC+∠ACF=90°,
∵∠ACE=90°,
∴∠DCB+∠ACF=90°,
∴∠FAC=∠DCB,
∴AC=EC,
在△ABC和△CDE中,
,
∴△ABC≌△CDE(ASA);
(2)解:∵△ABC≌△CDE,
∴DE=BC=10cm,
∵点B是EC的中点,
∴EC=2BC=20cm,
∴AC=EC=20cm,
在Rt△AEC中,根据勾股定理,得
AE==20(cm).
18.证明:(1)∵CE⊥AB,
∴∠AEF=∠CEB=90°.
∴∠AFE+∠EAF=90°,
∵AD⊥BC,
∴∠ADC=90°,
∴∠CFD+∠ECB=90°,
又∵∠AFE=∠CFD,
∴∠EAF=∠ECB.
在△AEF和△CEB中,
,
∴△AEF≌△CEB(ASA);
(2)∵△AEF≌△CEB,
∴AF=BC,
∵AB=AC,AD⊥BC
∴CD=BD,BC=2CD.
∴AF=2CD.
19.(1)证明:∵∠BAE=∠CAD,
∴∠BAD=∠CAE,
在△ABD和△ACE中,
,
∴△ABD≌△ACE(SAS);
(2)解:∵△ABD≌△ACE,
∴∠ACE=∠ABD=20°,
∵AB=AC,
∴∠ABC=∠ACB=(180°﹣86°)=47°,
∴∠FBC=∠FCB=47°﹣20°=27°,
∴∠BFC=180°﹣27°﹣27°=126°.
20.证明:∵∠1=∠2
∴∠1+∠BAE=∠2+∠BAE,
即∠DAE=∠BAC,
在△DAE和△BAC中,
,
∴△DAE≌△BAC(ASA),
∴DE=BC.
21.证明:(1)∵正五边形ABCDE,
∴AB=BC,∠ABM=∠C,
∴在△ABM和△BCN中
,
∴△ABM≌△BCN(SAS);
(2)∵△ABM≌△BCN,
∴∠BAM=∠CBN,
∵∠BAM+∠ABP=∠APN,
∴∠CBN+∠ABP=∠APN=∠ABC==108°.
即∠APN的度数为108°
22.(1)证明:∵BE=CF,
∴BE+EF=CF+EF,
即BF=CE.
在△ABF与△DCE中,
,
∴△ABF≌△DCE(AAS),
∴AB=DC.
(2)△OEF为等腰三角形
理由如下:∵△ABF≌△DCE,
∴∠AFB=∠DEC,
∴OE=OF,
∴△OEF为等腰三角形.
湘教版八年级上册第1章 分式综合与测试随堂练习题: 这是一份湘教版八年级上册第1章 分式综合与测试随堂练习题,共9页。试卷主要包含了如果分式有意义,那么,若分式的值为0,则x的值是,计算÷的结果为,已知,则x的值为,化简÷+的结果是,如果a﹣b=5,那么代数式等内容,欢迎下载使用。
苏科版八年级上册第三章 勾股定理3.3 勾股定理的简单应用优秀课后作业题: 这是一份苏科版八年级上册第三章 勾股定理3.3 勾股定理的简单应用优秀课后作业题,共18页。试卷主要包含了如图,小明等内容,欢迎下载使用。
初中苏科版第三章 勾股定理3.2 勾股定理的逆定理精品课时训练: 这是一份初中苏科版第三章 勾股定理3.2 勾股定理的逆定理精品课时训练,共21页。试卷主要包含了下列各组数是勾股数的一组是等内容,欢迎下载使用。