搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022高中数学人教版必修1教案:2.1.1指数与指数幂的运算+(系列二)+Word版含答案

    2021-2022高中数学人教版必修1教案:2.1.1指数与指数幂的运算+(系列二)+Word版含答案第1页
    2021-2022高中数学人教版必修1教案:2.1.1指数与指数幂的运算+(系列二)+Word版含答案第2页
    2021-2022高中数学人教版必修1教案:2.1.1指数与指数幂的运算+(系列二)+Word版含答案第3页
    还剩5页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学必修12.1.1指数与指数幂的运算教学设计

    展开

    这是一份数学必修12.1.1指数与指数幂的运算教学设计,共8页。
     2.1.1 指数与指数幂的运算(二)(一)教学目标1.知识与技能1)理解分数指数幂的概念;2)掌握分数指数幂和根式之间的互化;3)掌握分数指数幂的运算性质;4)培养学生观察分析、抽象等的能力.2.过程与方法通过与初中所学的知识进行类比,得出分数指数幂的概念,指数幂的性质.3.情感、态与价值观    1)培养学生观察分析,抽象的能力,渗透转化的数学思想;2)通过运算训练,养成学生严谨治学,一丝不苟的学习习惯;3)让学生体验数学的简洁美和统一美.(二)教学重点、难点1.教学重点:(1)分数指数幂的理解;           (2)掌握并运用分数指数幂的运算性质;2.教学难点:分数指数幂概念的理解(三)教学方法发现教学法1经历由利用根式的运算性质对根式的化简,注意发现并归纳其变形特点,进而由特殊情形归纳出一般规律.2.在学生掌握了有理指数幂的运算性质后,进一步推广到实数范围内.由此让学生体会发现规律,并由特殊推广到一般的研究方法.(四)教学过程教学环节教学内容师生互动设计意图提出问题回顾初中时的整数指数幂及运算性质.,什么叫实数?有理数,无理数统称实数. 老师提问,学生回答.学习新知前的简单复习,不仅能唤起学生的记忆,而且为学习新课作好了知识上的准备.复习引入观察以下式子,并总结出规律:0             小结:当根式的被开方数的指数能被根指数整除时,根式可以写成分数作为指数的形式,(分数指数幂形式).根式的被开方数不能被根指数整除时,根式是否也可以写成分数指数幂的形式.如:即:     老师引导学生当根式的被开方数的指数能被根指数整除时,根式可以写成分数作为指数的形式,(分数指数幂形式)联想根式的被开方数不能被根指数整除时,根式是否也可以写成分数指数幂的形式..从而推广到正数的分数指数幂的意义.数学中引进一个新的概念或法则时,总希望它与已有的概念或法则是相容的.形成概念 为此,我们规定正数的分数指数幂的意义为:正数的定负分数指数幂的意义与负整数幂的意义相同.即:规定:0的正分数指数幂等于00的负分数指数幂无意义.说明:规定好分数指数幂后,根式与分数指数幂是可以互换的,分数指数幂只是根式的一种新的写法,而不是 学生计算、构造、猜想,允许交流讨论,汇报结论.教师巡视指导.让学生经历从特殊一一般归纳一猜想,是培养学生合情推理能力的有效方式,同时学生也经历了指数幂的再发现过程,有利于培养学生的创造能力.深化概念 由于整数指数幂,分数指数幂都有意义,因此,有理数指数幂是有意义的,整数指数幂的运算性质,可以推广到有理数指数幂,即:1230P是一个无理数,则P该如何理解?为了解决这个问题,引导学生先阅读课本P57——P58.即:的不足近似值,从由小于的方向逼近的过剩近似值从大于的方向逼近.所以,当不足近似值从小于的方向逼近时,的近似值从小于的方向逼近.的过剩似值从大于的方向逼近时,的近似值从大于的方向逼近(如课本图所示) 所以,是一个确定的实数.一般来说,无理数指数幂是一个确定的实数,有理数指数幂的性质同样适用于无理数指数幂.无理指数幂的意义,是用有理指数幂的不足近似值和过剩近似值无限地逼近以确定大小.思考:的含义是什么?由以上分析,可知道,有理数指数幂,无理数指数幂有意义,且它们运算性质相同,实数指数幂有意义,也有相同的运算性质,即: 让学生讨论、研究,教师引导.通过本环节的教学,进一步体会上一环节的设计意图.应用举例例题1P56,例2)求值.2P56,例3)用分数指数幂的形式表或下列各式(0.分析:先把根式化为分数指数幂,再由运算性质来运算.解:     .课堂练习:P59练习  1234补充练习:1. 计算:的结果2. . 学生思考,口答,教师板演、点评.1解:         .2分析:先把根式化为分数指数幂,再由运算性质来运算.解:.练习答案:1.解:原式===5122.解:原式==.通过这个例题的解答,巩固所学的分数指数幂与根式的互化以及分数指数幂的求值,提高运算能力.归纳总结1.分数指数是根式的另一种写法.2.无理数指数幂表示一个确定的实数.3.掌握好分数指数幂的运算性质,其与整数指数幂的运算性质是一致的. 先让学生独自回忆,然后师生共同总结.巩固本节学习成果,使学生逐步养成爱总结、会总结的习惯和能力.课后作业作业:2.1 第二课时  习案学生独立完成巩固新知提升能力备选例题1计算11【解析】1)原式2)原式=        =        =.【小结】一般地,进行指数幂运算时,化负指数为正指数,化小数为分数进行运算,便于进行乘除、乘方、开方运算,可以达到化繁为简的目的.2 化简下列各式:12.【解析】1)原式=   =   =   =   =2)原式=    .【小结】(1)指数幂的一般运算步骤是:有括号先算括号里的;无括号先做指数运算. 负指数幂化为正指数幂的倒数. 底数是负数,先确定符号,底数是小数,先要化成分数,底数是带分数,先要化成假分数,然后要尽可能用幂的形式表示,便于用指数运算性质.2)根据一般先转化成分数指数幂,然后再利用有理指数幂的运算性质进行运算. 在将根式化为分数指数幂的过程中,一般采用由内到外逐层变换为指数的方法,然后运用运算性质准确求解. .3)利用分数指数幂进行根式计算时,结果可化为根式形式或保留分数指数幂的形式,但不能既有根式又有分数指数幂.   

    相关教案

    高中数学人教版新课标A必修12.1.1指数与指数幂的运算教案:

    这是一份高中数学人教版新课标A必修12.1.1指数与指数幂的运算教案,共4页。

    必修12.1.1指数与指数幂的运算教案设计:

    这是一份必修12.1.1指数与指数幂的运算教案设计,共3页。教案主要包含了教学设想,新课讲解等内容,欢迎下载使用。

    2020-2021学年2.1.1指数与指数幂的运算教学设计:

    这是一份2020-2021学年2.1.1指数与指数幂的运算教学设计,共6页。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map