终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022高中数学人教版必修1教案:2.2.1对数与对数运算+(系列五)+Word版含答案

    立即下载
    加入资料篮
    2021-2022高中数学人教版必修1教案:2.2.1对数与对数运算+(系列五)+Word版含答案第1页
    2021-2022高中数学人教版必修1教案:2.2.1对数与对数运算+(系列五)+Word版含答案第2页
    2021-2022高中数学人教版必修1教案:2.2.1对数与对数运算+(系列五)+Word版含答案第3页
    还剩7页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教版新课标A必修12.2.1对数与对数运算教案

    展开

    这是一份人教版新课标A必修12.2.1对数与对数运算教案,共10页。教案主要包含了补充作业等内容,欢迎下载使用。
     2.2  对数函数2.2.1  对数与对数运算整体设计教学分析我们在前面的学习过程中,已了解了指数函数的概念和性质,它是后续学习的基础,从本节开始我们学习对数及其运算.使学生认识引进对数的必要性,理解对数的概念及其运算性质,了解对数换底公式及其简单应用,能将一般对数转化为常用对数或自然对数,通过阅读材料,了解对数的发现历史及其对简化运算的作用.教材注重从现实生活的事例中引出对数概念,所举例子比较全面,有利于培养学生的思想素质和激发学生学习数学的兴趣和欲望.教学中要充分发挥课本的这些材料的作用,并尽可能联系一些熟悉的事例,以丰富教学的情景创设.教师要尽量发挥电脑绘图的教学功能,教材安排了阅读与思考的内容,有利于加强数学文化的教育,应指导学生认真研读.根据本节内容的特点,教学中要注意发挥信息技术的力量,使学生进一步体会到信息技术在数学学习中的作用,尽量利用计算器和计算机创设教学情境,为学生的数学探究与数学思维提供支持.三维目标1.理解对数的概念,了解对数与指数的关系;理解和掌握对数的性质;掌握对数式与指数式的关系;通过实例推导对数的运算性质,准确地运用对数运算性质进行运算,并掌握化简求值的技能;运用对数运算性质解决有关问题.培养学生分析、综合解决问题的能力;培养学生数学应用的意识和科学分析问题的精神和态度.2.通过与指数式的比较,引出对数的定义与性质;让学生经历并推理出对数的运算性质;让学生归纳整理本节所学的知识.3.学会对数式与指数式的互化,从而培养学生的类比、分析、归纳能力;通过对数的运算法则的学习,培养学生的严谨的思维品质;在学习过程中培养学生探究的意识;让学生感受对数运算性质的重要性,增加学生的成功感,增强学习的积极性.重点难点教学重点:对数式与指数式的互化及对数的性质,对数运算的性质与对数知识的应用.教学难点:对数概念的理解,对数运算性质的推导及应用.课时安排3课时教学过程1课时  对数与对数运算(1)导入新课思路1.1.庄子:一尺之棰,日取其半,万世不竭.1)取4,还有多长?(2)取多少次,还有0.125尺?2.假设2002年我国国民生产总值为a亿元,如果每年平均增长8%,那么经过多少年国民生产总值是2002年的2倍?抽象出:1.()4=?()x0.125x=?2.(1+8%)x=2x=?都是已知底数和幂的值,求指数.你能看得出来吗?怎样求呢?像上面的式子,已知底数和幂的值,求指数,这就是我们这节课所要学习的对数〔引出对数的概念,教师板书课题:对数与对数运算(1).思路2.我们前面学习了指数函数及其性质,同时也会利用性质解决问题,但仅仅有指数函数还不够,为了解决某些实际问题,还要学习对数函数,为此我们先学习对数〔引出对数的概念,教师板书课题:对数与对数运算(1).推进新课新知探究提出问题(对于课本P572.1.2的例8)利用计算机作出函数y=13×1.01x的图象.从图象上看,哪一年的人口数要达到18亿、20亿、30亿…?如果不利用图象该如何解决,说出你的见解?=1.01x,=1.01x,=1.01x,在这几个式子中,x分别等于多少?你能否给出一个一般性的结论?活动:学生讨论并作图,教师适时提示、点拨.对问题,回忆计算机作函数图象的方法,抓住关键点.对问题,图象类似于人的照片,从照片上能看出人的特点,当然从函数图象上就能看出函数的某些点的坐标.对问题,定义一种新的运算.对问题,借助,类比到一般的情形.讨论结果:如图2-2-1-1.2-2-1-1在所作的图象上,取点P,测出点P的坐标,移动点P,使其纵坐标分别接近18,20,30,观察这时的横坐标,大约分别为32.72,43.29,84.04,这就是说,如果保持年增长率为1个百分点,那么大约经过33,43,84,我国人口分别约为18亿,20亿,30亿.=1.01x,=1.01x,=1.01x,在这几个式子中,要求x分别等于多少,目前我们没学这种运算,可以定义一种新运算,即若=1.01x,x称作以1.01为底的的对数.其他的可类似得到,这种运算叫做对数运算.一般性的结论就是对数的定义:一般地,如果a(a>0,a≠1)x次幂等于N,就是ax=N,那么数x叫做以a为底N的对数(logarithm),记作x=logaN,其中a叫做对数的底数,N叫做真数.有了对数的定义,前面问题的x就可表示了:x=log1.01,x=log1.01,x=log1.01.由此得到对数和指数幂之间的关系: aNb指数式ab=N底数指数对数式logaN=b对数的底数真数对数例如:42=162=log416;102=1002=log10100;4=2=log42;10-2=0.01-2=log100.01提出问题为什么在对数定义中规定a>0,a≠1?根据对数定义求loga1logaa(a>0,a≠1)的值.负数与零有没有对数?=Nlogaab=b(a>0,a≠1)是否成立?讨论结果:这是因为若a0,N为某些值时,b不存在,log(-2;a=0,N不为0,b不存在,log03,N0,b可为任意正数,是不唯一的,log00有无数个值;a=1,N不为1,b不存在,log12,N1,b可为任意数,是不唯一的,log11有无数个值.综之,就规定了a0a≠1.loga1=0,logaa=1.因为对任意a>0a≠1,都有a0=1,所以loga1=0.同样易知:logaa=1.1的对数等于0,底的对数等于1.因为底数a0a≠1,由指数函数的性质可知,对任意的bR,ab0恒成立,即只有正数才有对数,零和负数没有对数.因为ab=N,所以b=logaN,ab=a=N,a=N.因为ab=ab,所以logaab=b.故两个式子都成立.(a=N叫对数恒等式)    思考我们对对数的概念和一些特殊的式子已经有了一定的了解,但还有两类特殊的对数对科学研究和了解自然起了巨大的作用,你们知道是哪两类吗?活动:同学们阅读课本P68的内容,教师引导,板书.解答:常用对数:我们通常将以10为底的对数叫做常用对数.为了简便,N的常用对数log10N简记作lgN.例如:log105简记作lg5;log103.5简记作lg3.5.自然对数:在科学技术中常常使用以无理数e=2.718 28……为底的对数,e为底的对数叫自然对数,为了简便,N的自然对数logeN简记作lnN.例如:loge3简记作ln3;loge10简记作ln10.应用示例思路11将下列指数式写成对数式,对数式写成指数式:154=625;22-6=;3()m=5.73;(4)log16=-4;(5)lg0.01=-2;(6)ln10=2.303.活动:学生阅读题目,独立解题,把自己解题的过程展示在屏幕上,教师评价学生,强调注意的问题.对(1)根据指数式与对数式的关系,4在指数位置上,4是以5为底625的对数.对(2)根据指数式与对数式的关系,-6在指数位置上,-6是以2为底的对数.对(3)根据指数式与对数式的关系,m在指数位置上,m是以为底5.73的对数.(4)根据指数式与对数式的关系,16在真数位置上,16-4次幂.(5)根据指数式与对数式的关系,0.01在真数位置上,0.0110-2次幂.(6)根据指数式与对数式的关系,10在真数位置上,10e2.303次幂.解:(1log5625=4;2log2=-6;3log5.73=m;4()-4=16;(5)10-2=0.01;(6)e2.303=10.    思考指数式与对数式的互化应注意哪些问题?活动:学生考虑指数式与对数式互化的依据,回想对数概念的引出过程,理清对数与指数幂的关系,特别是位置的对照.解答:若是指数式化为对数式,关键要看清指数是几,再写成对数式.若是对数式化为指数式,则要看清真数是几,再写成幂的形式.最关键的是搞清Nb在指数式与对数式中的位置,千万不可大意,其中对数的定义是指数式与对数式互化的依据.变式训练课本P64练习  12.2求下列各式中x的值:1log64x=;2logx8=6;3lg100=x;4-lne2=x.活动:学生独立解题,教师同时展示学生的作题情况,要求学生说明解答的依据,利用指数式与对数式的关系,转化为指数式求解.解:(1)因为log64x=-,所以x=64=(2)=2-4=.2)因为logx8=6,所以x6=8=23=()6.因为x>0,因此x=.3)因为lg100=x,所以10x=100=102.因此x=2.4)因为-lne2=x,所以lne2=-x,e-x=e2.因此x=-2.点评:本题要注意方根的运算,同时也可借助对数恒等式来解.变式训练求下列各式中的xlog4x=;logx27=;log5log10x=1.解:log4x=,x=4=2;logx27=,x=27,所以x=27=81;log5log10x=1,log10x=5,x=105.点评:在解决对数式的求值问题时,若不能一下子看出结果,根据指数式与对数式的关系,首先将其转化为指数式,进一步根据指数幂的运算性质算出结果.思路21以下四个命题中,属于真命题的是(    1)若log5x=3,x=15  2)若log25x=,x=5  3)若logx=0,x=  4)若log5x=3,x=A.2)(3      B.1)(3        C.2)(4      D.3)(4活动:学生观察,教师引导学生考虑对数的定义.对数式化为指数式,根据指数幂的运算性质算出结果.对于(1)因为log5x=3,所以x=53=125,错误;对于(2)因为log25x=,所以x=25=5,正确;对于(3)因为logx=0,所以x0=,无解,错误;对于(4)因为log5x=3,所以x=5-3=,正确.总之(2)(4)正确.答案:C点评:对数的定义是对数形式和指数形式互化的依据.2对于a0,a≠1,下列结论正确的是(    1)若M=N,logaM=logaN  2)若logaM=logaN,M=N  3)若logaM2=logaN2,M=N  4)若M=N,logaM2=logaN2A.1)(3       B.2)(4      C.2       D.1)(2)(4活动:学生思考,讨论,交流,回答,教师及时评价.回想对数的有关规定.对(1)若M=N,M0或负数时logaM≠logaN,因此错误;对(2)根据对数的定义,logaM=logaN,M=N,正确;对(3)若logaM2=logaN2,M=±N,因此错误;对(4)若M=N=0,logaM2logaN2都不存在,因此错误.综上,2)正确.答案:C点评:0和负数没有对数,一个正数的平方根有两个.3计算:(1)log927;(2)log81;(3)log(2-3);(4)log625.活动:教师引导,学生回忆,教师提问,学生回答,积极交流,学生展示自己的解题过程,教师及时评价学生.利用对数的定义或对数恒等式来解.求式子的值,首先设成对数式,再转化成指数式或指数方程求解.另外利用对数恒等式可直接求解,所以有两种解法.解法一:(1)x=log927,9x=27,32x=33,所以x=;(2)x=log81,()x=81,3=34,所以x=16;(3)x=log(2-)=log(2+)-1,所以(2+)x=(2+)-1,x=-1;(4)x=log625,所以()x=625,5x=54,x=3.解法二:(1)log927=log933=log99=;(2)log81=log()16=16;(3)log(2-)=log(2+)-1=-1;(4)log625=log()3=3.点评:首先将其转化为指数式,进一步根据指数幂的运算性质算出结果,对数的定义是转化和对数恒等式的依据.变式训练课本P64练习  34.知能训练1.把下列各题的指数式写成对数式:(1)4216;230=1;34x2;42x0.5;(5)54=625;(6)3-2=;(7)()-2=16.解:(1)2log416;(2)0log31;(3)x=log4;(4)x=log20.5;(5)4=log5625;(6)-2=log3;(7)-2=log16.2.把下列各题的对数式写成指数式:(1)x=log527;(2)x=log87;(3)x=log43;(4)x=log7;(5)log216=4;(6)log27=-3;(7)log=6;(8)logx64=-6;(9)log2128=7;(10)log327=a.解:(1)5x27;(2)8x=7;(3)4x3;(4)7x;(5)24=16;(6)()-3=27;(7)()6=x;(8)x-6=64;(9)27=128;(10)3a=27.3.求下列各式中x的值:(1)log8x=;(2)logx27=;(3)log2log5x=1;(4)log3lgx=0.解:(1)因为log8x=,所以x=8=(23)==2-2=;(2)因为logx27=,所以x=27=33,x=(33)=34=81;(3)因为log2log5x=1,所以log5x=2,x=52=25;(4)因为log3lgx=0,所以lgx=1,x=101=10.4.(1)log84的值;(2)已知loga2=m,loga3=n,a2m+n的值.解:(1)log84=x,根据对数的定义有8x=4,23x=22,所以x=,log84=;(2)因为loga2=m,loga3=n,根据对数的定义有am=2,an=3,所以a2m+n=(am)2·an=(2)2·3=4×3=12.点评:此题不仅是简单的指数与对数的互化,还涉及到常见的幂的运算法则的应用.拓展提升请你阅读课本75页的有关阅读部分的内容,搜集有关对数发展的材料,以及有关数学家关于对数的材料,通过网络查寻关于对数换底公式的材料,为下一步学习打下基础.课堂小结(1)对数引入的必要性;(2)对数的定义;(3)几种特殊数的对数;(4)负数与零没有对数;(5)对数恒等式;(6)两种特殊的对数.作业课本P74习题2.2A  12.【补充作业】1.将下列指数式与对数式互化,x的求出x的值.15=;2log24=x;33x=;4()x=64;5lg0.000 1=x;6lne5=x.解:(15=化为对数式是log5=;2x=log4化为指数式是()x=4,2=22,=2,x=4;33x=化为对数式是x=log3,因为3x=()3=3-3,所以x=-3;4()x=64化为对数式是x=log64,因为()x=64=43,所以x=-3;5lg0.0001=x化为指数式是10x=0.0001,因为10x=0.000 1=10-4,所以x=-4;6lne5=x化为指数式是ex=e5,因为ex=e5,所以x=5.2.计算的值.解:设x=log3,3x=,(3)x=(),所以x=log.所以3===.3.计算(a>0,b>0,c>0,N>0).解:===N.设计感想本节课在前面研究了指数函数及其性质的基础上,为了运算的方便,引进了对数的概念,使学生感受到对数的现实背景,它有着丰富的内涵,和我们的实际生活联系密切,也是以后学习对数函数的基础,鉴于这种情况,安排教学时,无论是导入还是概念得出的过程,都比较详细,通俗易懂,要反复练习,要紧紧抓住它与指数概念之间的联系与区别,结合指数式理解对数式,强化对数是一种运算,并注意对数运算符号的理解和记忆,多运用信息化的教学手段,顺利完成本堂课的任务,为下一节课作准备. 

    相关教案

    苏教版必修13.2.1 对数教学设计及反思:

    这是一份苏教版必修13.2.1 对数教学设计及反思,共5页。教案主要包含了学习目标,学习重点,学习难点,自主质疑,合作探究,精讲点拨,知识梳理,巩固拓展训练等内容,欢迎下载使用。

    人教版新课标A必修12.2.1对数与对数运算教学设计:

    这是一份人教版新课标A必修12.2.1对数与对数运算教学设计,共6页。

    人教版新课标A必修12.2.1对数与对数运算教案:

    这是一份人教版新课标A必修12.2.1对数与对数运算教案,共10页。教案主要包含了补充作业等内容,欢迎下载使用。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map