所属成套资源:2021年八年级数学上学期期中测试卷及答案
2021年辽宁省鞍山市八年级上学期数学期中试卷
展开
这是一份2021年辽宁省鞍山市八年级上学期数学期中试卷,共19页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
八年级上学期数学期中试卷
一、单选题
1.如下字体的四个汉字中,是轴对称图形的是( )
A. B. C. D.
2.已知三角形两边的长分别是3和7,则此三角形第三边的长可能是( )
A. 1 B. 2 C. 8 D. 11
3.下列生产和生活:①用人字架来建筑房屋;②用窗钩来固定窗扇;③在栅栏门上斜钉着一根木条;④商店的推拉活动防盗门等.其中,用到三角形的稳定性的有( )
A. 1种 B. 2种 C. 3种 D. 4种
4.如图,在△ABC中,AB=AC,△ADE的顶点D,E分别在BC,AC上,且∠DAE=90°,AD=AE.若∠C+∠BAC=145°,则∠EDC的度数为( )
A. 17.5° B. 12.5° C. 12° D. 10°
5.若一个多边形的各内角都相等,则一个内角与一个外角的度数之比不可能是( )
A.2:1
B.1:1
C.5:2
D.5:4
6.如图所示,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点C′处,折痕为EF,若∠EFC′=125°,那么∠ABE的度数为( )
A. 15° B. 20° C. 25° D. 30°
7.如图,在△ABC中,AB=AC,∠A=120°,BC=6 cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为 ( )
A. 4 cm B. 3 cm C. 2 cm D. 1 cm
8.如图,已知∠BOF=120°,则∠A+∠B+∠C+∠D+∠E+∠F为多少度( )
A. 360° B. 720° C. 540° D. 240°
9.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于 MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是( )
A. 15 B. 30 C. 45 D. 60
10.如图,在Rt△ABC中,∠BAC=90°,AB=AC , 点D为BC中点,直角MDN绕点旋转,DM、DN分别与边AB , AC交于E、F两点,下列结论:①△DEF是等腰直角三角形; ②AE=CF; ③△BDE≌△ADF; ④BE+CF=EF . 其中正确的是( )
A. ①②④ B. ②③④ C. ①②③ D. ①②③④
二、填空题
11.如图,在△ABC中,∠C=90°,BD=6cm , AD平分∠BAC , BC=10cm , 则点D到AB的距离为 .
12.如图,在 ABC中,BC边的垂直平分线交BC于D,交AB于E,若CE平分∠ACB,∠B=40°则∠A= 度.
13.在4×4的方格中有五个同样大小的正方形如图摆放,移动其中一个正方形到空白方格中,与其余四个正方形组成的新图形是一个轴对称图形,这样的移法共有 种.
14.如图, , 是 延长线上的一点, ,动点 从点 出发沿 以 的速度移动,动点 从点 发沿 以 的速度移动,如果点 同时出发,用 表示移动的时间,当 时, 是等腰三角形.
15.如图,把三角形铁皮ABC加工成四边形ABCD形状的零件,∠A=40°,且D恰好是△ABC两条角平分线的交点,工人师傅量得∠BDC=110°,则这个四边形零件加工 . (填“合格”或“不合格”)
16.如图,△ABC中,∠A:∠ABC:∠ACB=3:5:10,又△A′B′C≌△ABC , 则∠BCA′:∠BCB′的值为 .
17.小华要从长度分别为5cm、6cm、11cm、16cm的四根小木棒中选出三根摆成一个三角形,那么他选的三根木棒的长度分别是: , , (单位:cm).
18.已知甲船从A处向正北方向航行,乙船在A处北偏西80°的B处,则乙船向 方向航行,两船正好能够相遇.(已知两船的速度相同,起始时间相同)
19.观察规律:1=12;1+3=22;1+3+5=32;1+3+5+7=42…则1+3+5+7+9+…+2013= .
20.如图,AB=12m,CA⊥AB于点A,DB⊥AB于点B,且AC=4m,点P从点B以1m/min的速度向点A运动;点Q从点B以2m/min的速度向点D运动,P,Q两点同时出发,运动 min时,△CAP与△PBQ全等.
三、解答题
21.如图,BA、BC是两条公路,在两条公路夹角内部的点P处有一油库,若在两公路上分别建个加油站,并使运油的油罐车从油库出发先到一加油站,再到另一加油站,最后回到油库的路程最短,则加油站应如何选址?
22.已知:如图,AB=AE,∠1=∠2,∠B=∠E.求证:BC=ED.
23.如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.
(1).求证:△ABC≌△AED;
(2).当∠B=140°时,求∠BAE的度数.
24.如图①,E、F分别为线段AC上的两个动点,且DE⊥AC于E,BF⊥AC于F,若AB=CD,AF=CE,BD交AC于点M.
(1)求证:MB=MD,ME=MF
(2)当E、F两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.
25.阅读下面的题目及分析过程,并按要求进行证明.
已知:如图,点E是BC的中点,点A在DE上,且∠BAE=∠CDE .
求证:AB=CD .
分析:证明两条线段相等,常用的方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等,因此,要证AB=CD , 必须添加适当的辅助线,构造全等三角形或等腰三角形.
(1)现给出如下两种添加辅助线的方法,请任意选出其中一种,对原题进行证明.
①如图1,延长DE到点F , 使EF=DE , 连接BF;
②如图2,分别过点B、C作BF⊥DE , CG⊥DE , 垂足分别为点F , G .
(2)请你在图3中添加不同于上述的辅助线,并对原题进行证明.
26.在△ABC中,若AD是∠BAC的角平分线,点E和点F分别在AB和AC上,且DE⊥AB , 垂足为E , DF⊥AC , 垂足为F(如图(1)),则可以得到以下两个结论:
①∠AED+∠AFD=180°;②DE=DF .
那么在△ABC中,仍然有条件“AD是∠BAC的角平分线,点E和点F , 分别在AB和AC上”,请探究以下两个问题:
(1)若∠AED+∠AFD=180°(如图(2)),则DE与DF是否仍相等?若仍相等,请证明;否则请举出反例.
(2)若DE=DF , 则∠AED+∠AFD=180°是否成立?(只写出结论,不证明)
答案解析部分
一、单选题
1.【答案】 D
【解析】【解答】解:A、不是轴对称图形,故不符合题意;
B、不是轴对称图形,故不符合题意;
C、不是轴对称图形,故不符合题意;
D、是轴对称图形,故符合题意;
故答案为:D.
【分析】把一个图形沿着某条直线折叠,直线两旁的部分能完全重合的图形就是轴对称图形;根据定义一一判断即可。
2.【答案】 C
【解析】【解答】解:设第三边长为x,则有
7-3
相关试卷
这是一份2021年辽宁省鞍山市九年级上学期数学期中试卷含答案,共22页。试卷主要包含了单项选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2021年辽宁省鞍山市铁东区八年级上学期数学期中试卷,共14页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份2020-2021年辽宁省鞍山市八年级上学期数学第二次月考试卷,共11页。试卷主要包含了单项选择题,填空题,解答题等内容,欢迎下载使用。