终身会员
搜索
    上传资料 赚现金

    2021年江西省抚州市八级上学期数学期中试卷

    立即下载
    加入资料篮
    2021年江西省抚州市八级上学期数学期中试卷第1页
    2021年江西省抚州市八级上学期数学期中试卷第2页
    2021年江西省抚州市八级上学期数学期中试卷第3页
    还剩13页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021年江西省抚州市八级上学期数学期中试卷

    展开

    这是一份2021年江西省抚州市八级上学期数学期中试卷,共16页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。


     八级上学期数学期中试卷
    一、单选题
    1.下列各数中,是无理数的是(   )
    A. 3.1415                                     B.                                      C.                                      D. 
    2.下列各组数中是勾股数的是(   )
    A. , ,                    B. 3,4,5                   C. 0.3,0.4,0.5                   D. , ,
    3.下列哪个点在函数 的图象上(   )
    A.                                  B.                                  C.                                  D. 
    4.平面直角坐标系中,点 在(    )
    A. 第一象限                           B. 第二象限                           C. 第三象限                           D. 第四象限
    5.已知M、N是线段AB上的两点,AM=MN=2,NB=1,以点A为圆心,AN长为半径画弧;再以点B为圆心,BM长为半径画弧,两弧交于点C,连接AC,BC,则△ABC一定是(     )
    A. 锐角三角形                       B. 直角三角形                       C. 钝角三角形                       D. 等腰三角形
    6.如图,在Rt△PQR中,∠PRQ=90°,RP=RQ,边QR在数轴上.点Q表示的数为1,点R表示的数为3,以Q为圆心,QP的长为半径画弧交数轴负半轴于点P1 , 则P1表示的数是(   )

    A. -2                               B. -2                                C. 1-2                                D. 2 -1
    二、填空题
    7.比较大小: ________3(填“>”、“<”或“=”号)
    8.若 +(b+2)2=0,则点M(a,b)关于x轴的对称点的坐标为       .

    9.一次函数 上有两点 和 ,则        (填“ ”“ ”或“ ”).
    10.《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺.问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部6尺远,问折断处离地面的高度是多少?设折断处离地面的高度为x尺,则可列方程为       .
    11.已知一次函数 的图象经过点 且与直线 平行,则此函数的表达式为       .
    12.如图所示,在平面直角坐标系中 , ,作 与 全等,则 的坐标       .

    三、解答题
    13.计算:
    (1);
    (2)
    14.先化简,再求值: ,其中 , .
    15.已知 的三边长分别为 、 、 ,且 , , .
    (1)判断 的形状,并说明理由;
    (2)如果一个正方形的面积与 的面积相等时,求这个正方形的边长.
    16.正方形网格中,小格的顶点叫做格点。小华按下列要求作图:①在正方形网格的三条不同的实线上各取一个格点,使其中任意两点不在同一条实线上;②连结三个格点,使之构成直角三角形。小华在左边的正方形网格中作出了Rt⊿ABC。请你按照同样的要求,在右边的两个正方形网格中各画出一个直角三角形,并使三个网格中的直角三角形互不全等。

    17.已知 的算数平方根是4, 的立方根是3, 是 的整数部分.求 的平方根.
    18.如图,直线 与 轴、 轴分别交于点 、 .

    (1)求 、 两点的坐标;
    (2)在 轴上有一点 ,使得 的面积为 ,求 点的坐标.
    19.小慧家与文具店相距 ,小慧从家出发,沿笔直的公路匀速步行 来到文具店买笔记本,停留 ,因家中有事,便沿原路匀速跑步 返回家中.

    (1)小慧返回家中的速度比去文具店的速度快多少?
    (2)请你画出这个过程中,小慧离家的距离 与时间 的函数图象;
    (3)根据图象回答,小慧从家出发后多少分钟离家距离为 ?
    20.如图,地面上放着一个小凳子,点 距离墙面 ,在图①中,一根细长的木杆一端与墙角重合,木杆靠在点 处, .在图②中,木杆的一端与点 重合,另一端靠在墙上点 处.

    (1)求小凳子的高度;
    (2)若 ,木杆的长度比 长 ,求木杆的长度和小凳子坐板的宽 .
    21.如图,平面直角坐标系中, 的顶点都在网格点上,其中 , , .

    (1)作出 关于 轴对称的 ;
    (2)求 的面积;
    (3)在 轴上是否存在一点 ,使 的和最短?如果存在,请求出此时 的值;如果不存在,请说明理由.
    22.如图,MN是一条东西朝向的笔直的公路,C是位于该公路上的一个检测点辆长为9m的小货车BD行驶在该公路上小王位于点A处观察小货车,某时刻他发现车头D、车尾B及检测点C分别距离他10m、17m,2 m

    (1)过点A向MN引垂线,垂足为E,请利用勾股定理分别找出线段AE与DE、AE与BE之间所满足的数量关系;
    (2)在上一问的提示下,继续完成下列问题:
    ①求线段DE的长度;
    ②该小货车的车头D距离检测点C还有多少m?
    23.如图,在平面直角坐标系中, 满足 , ,点 、 分别在 轴和 轴上,当点 从原点 开始沿 轴的正方向运动时,则点 始终落在 轴上运动,点 始终在第一象限运动.
      
    (1)当 轴时,求点 的坐标;
    (2)随着 、 的运动,当点 落在直线 上时,求此时 点的坐标;
    (3)在(2)的条件下,在 轴上是否存在点 ,使以 、 、 、 为顶点的四边形面积是 ?如果存在,请直接写出点 的坐标;如果不存在,请说明理由.

    答案解析部分
    一、单选题
    1.【答案】 C
    【解析】【解答】解:∵B项化简后等于2,A项为有限小数,D项为分数,可以化成循环小数,C项为开不尽方的无限不循环小数,
    ∴ A、B、D为有理数,C为无理数,
    故答案为:C.

    【分析】根据无理数的定义逐项判断即可。
    2.【答案】 B
    【解析】【解答】A. , 不是勾股数;
    B. 是勾股数;
    C.0.3,0.4,0.5中,都不是正整数,故不是勾股数;
    D. , 不是正整数,故不是勾股数.
    故答案为:B.

    【分析】利用勾股定理的逆定理逐项判断即可。
    3.【答案】 C
    【解析】【解答】解:(1)当x=2时,y=2,所以(2,1)不在函数 的图象上,(2,0)也不在函数 的图象上;(2)当x=−2时,y=0,所以(−2,1)不在函数 的图象上,(−2,0)在函数 的图象上.
    故答案为:C.
    【分析】分别把x=2和x=−2代入解析式求出对应的y值来判断点是否在函数图象上.
    4.【答案】 B
    【解析】【解答】∵ ,-3<0,
    ∴点 在第二象限.
    故答案为:B.

    【分析】根据-3<0,, 再利用点坐标与象限的关系,逐项判定即可。
    5.【答案】 B
    【解析】【解答】如图所示,

    AC=AN=4,BC=BM=3,AB=2+2+1=5,
    ∴AC2+BC2=AB2 ,
    ∴△ABC是直角三角形,且∠ACB=90°,
    故答案为:B.

    【分析】如图所示,根据作图可得AC=AN=4,BC=BM=3,从而求出AB的长,根据勾股定理的逆定理可得△ABC是直角三角形.
    6.【答案】 C
    【解析】【解答】解:根据题意可得QP= =2 ,
    ∵Q表示的数为1,
    ∴P1表示的数为1-2 .
    故答案为:C.
    【分析】由题意用勾股定理可求得QP的长,由圆的半径相等可得QP=QP1 , 再根据点Q所对应的数和点P1所对应的位置可求解.
    二、填空题
    7.【答案】 >
    【解析】【解答】∵10>9


    ∴ .
    故答案为:>.

    【分析】先分别将和3平方,比较10和9的大小即可。
    8.【答案】 ( 3,2 )
    【解析】【解答】解:由 +(b+2)2=0,得

    a﹣3=0,b+2=0,
    所以a=3,b=﹣2,
    ∴M(3,﹣2),
    ∴点M(a,b)关于x轴的对称点的坐标为:( 3,2 );
    故答案是:( 3,2 ).
    【分析】利用非负数的性质求得a、b的值,即可求得点M的坐标,根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,进而得出答案.
    9.【答案】 >
    【解析】【解答】解:∵ ,k=-2<0,
    ∴y随x的增大而减小,
    又∵-1<3,
    ∴ >
    故答案为:>.

    【分析】根据一次函数的解析式可知:y随x的增大而减小,利用此性质求解即可。
    10.【答案】 x2+62=(10-x)2
    【解析】【解答】根据题意画出图形,折断处离地面的高度为x尺,则AB=10﹣x,BC=6,
    在Rt△ABC中,AC2+BC2=AB2 , 即x2+62=(10﹣x)2 ,
    故答案为x2+62=(10﹣x)2 .


    【分析】根据题意,利用勾股定理列出方程即可。
    11.【答案】 y=2x-5
    【解析】【解答】解:由题意可得k=2,
    ∴有y=2x+b,
    ∵y=2x+b的图象经过A(4,3),
    ∴有2×4+b=3,
    解之可得:b= -5,
    ∴所求的函数表达式为y=2x-5,
    故答案为y=2x-5 .

    【分析】根据两直线平行,斜率相等,再利用待定系数法求解即可。
    12.【答案】 (-2,0)或(2,3)或(-2,3)
    【解析】【解答】解:如图所示:

    有三个点符合,
    ∵点A(2,0),B(0,3),
    ∴OB=3,OA=2,
    若 ≌ ,
    ∴OA=OC1=2
    ∴C1(-2,0);
    若 ≌ ,
    ∴OA=BC2=2,∠OBC2=∠BOA=90°
    ∴C2(-2,3);
    若 ≌ ,
    ∴OA=BC3=2,∠OBC3=∠BOA=90°
    ∴C3(2,3);
    综上:点C的坐标为(-2,0)或(2,3)或(-2,3)
    故答案为:(-2,0)或(2,3)或(-2,3).

    【分析】根据全等三角形的性质画出图形,根据坐标与图形性质解答即可。
    三、解答题
    13.【答案】 (1)解:原式 ,


    (2)解:原式 ,

    【解析】【分析】(1)先利用二次根式的性质化简,再计算即可;
    (2)先利用二次根式的性质和0指数幂的性质化简,再计算即可。
     
     
    14.【答案】 解:原式 ,

    把 , 代入,
    原式 ,
    =8;
    【解析】【分析】先利用整式的混合运算化简,再将a、b的值代入计算即可。
    15.【答案】 (1)解:在 中, , ,
    , ,

    是直角三角形;

    (2)解:设这个正方形的边长为 ,
    ∵一个正方形的面积与 的面积相等,
    ∴ ,
    解得: ,


    答:这个正方形的边长为 .
    【解析】【分析】(1)先利用勾股定理的逆定理判断即可;
    (2)先求出三角形的面积,再设这个正方形的边长为   , 利用“正方形的面积与  的面积相等 ”,列出方程求解即可。
     
     
    16.【答案】 解:画图如下:

    易得图1三边长为 、 、 =2 ,符合两边和的平方等于第三边的平方,
    图2中三边长分别为 、 =3 、 =2 符合两边和的平方等于第三边的平方,
    第三个图中,三边长分别为 =2 、 =2 、 =4符合两边和的平方等于第三边的平方,
    【解析】【分析】画的直角三角形的三边应符合两直角边的平方和等于斜边的平方.第一个图形和第二个图形的面积可让两条直角边的积÷2即可.
    17.【答案】 解:根据题意可得: ,
    ∴ ,


    ∵ ,
    ∴ ,

    即 的平方根为 .
    【解析】【分析】先利用平方根、立方根的性质求出a的值,再利用求出c的值,最后将a、b、c代入计算即可。
    18.【答案】 (1)解:把 代入, , ,

    把 代入, ,


    (2)解:设 的坐标 ,



    或者 ,
    或者 ;

    【解析】【分析】(1)将x=0和y=0分别代入函数解析式求解即可得到A、B的坐标;
    (2)设  的坐标   , 再利用三角形的面积公式列出方程求解即可。
     
     
    19.【答案】 (1)解:由题意可得:
    答:小慧返回家中的速度比去文具店的速度快

    (2)解:如图所示:


    (3)解:根据图象可得:小慧从家出发后6分钟或18分钟分钟离家距离为 .
    【解析】【分析】(1)根据“速度=路程÷时间”的关系列出算式即可求解;
    (2)根据题中已知的条件,描点画出函数图像即可;
    (3)根据图像可得小慧从家出发后离家距离为480米的时间。
     
     
    20.【答案】 (1)解:如图①,过 作 垂直于墙面,垂足于点 ,

    根据题意可得: ,
    在 中,

    即凳子的高度为 ;

    (2)解:如图②,延长 交墙面于点 ,可得 ,

    设 ,则 , , ,
    在 中, ,



    【解析】【分析】(1)过  作  垂直于墙面,垂足于点   , 根据勾股定理求解即可;
    (2)延长BA交墙面于点N,根据勾股定理解答即可。
     
     
    21.【答案】 (1)解:先作出A、B、C关于y轴的对称点A1、B1、C1 , 顺次连结A1B1 , B1C1 , A1C1 ,
    则△A1B1C1为所求;


    (2)解: , , .如图过A作平行y轴直线与过B作平行x轴直线交于E,过C作CF∥AE交直线BE与F,交过A与x轴平行的直线与D,则四边形AEFD为矩形,
    S△ABC=S矩形-S△AEB-S△BFC-S△ADC= ;

    (3)解:找出 点关于 轴对称的点 ,连接 ,与 轴的交点为 .PA=PA′,PA+PB=PA′+PB=A′B,利用两点间线段最短知点P是所求使 的和最短的点,
    , ,A′(-4,-5),

    【解析】【分析】(1)先作出点A、B、C三点关于y轴对称的点,再连线即可;
    (2)利用割补法求解即可;
    (3)利用“将军饮马”的方法,先作出点A关于x轴的对称点A',再连接A'B交x轴于点P,再利用两点之间的距离公式求解即可。
     
     
    22.【答案】 (1)解:在直角△ADE中,∵∠AED=90°,AD=10,
    ∴AE2+DE2=AD2=100,
    在直角△ABE中,∵∠AEB=90°,AB=17,
    ∴AE2+BE2=AB2=289

    (2)解:①两式相减,得:BE2﹣DE2=189,
    ∴BD=BE﹣DE=9,BE+DE=BD+DE+DE=9+2DE,
    ∴BE2﹣DE2=(BE+DE)(BE﹣DE)=9(9+2DE)=189,
    ∴DE=6;
    ②在直角△ADE中,∵∠AED=90°,
    ∴AE=  =8,
    在Rt△AEC中,CE=  =10,
    ∴CD=CE+DE=16.
    【解析】【分析】(1)根据勾股定理可得AE2+DE2=AD2, AE2+BE2=AB2, 再将AD=10,AB=17代入即可求解;
    (2)①将(1)中两个式子相减,得出BE2﹣DE2=189,利用平方差公式以及BD=9即可求出DE;②先在直角三角形ADE中利用勾股定理求出AE=8,由直角三角形ACE,根据勾股定理得到CE,那么CD=CE+DE=16.
     
     
    23.【答案】 (1)解: , ,
    , ,
    轴, , ,
    , , , 点的坐标为 ;


    (2)解:过 点作 轴,垂足于 ,

    , , ,
    , ,

    , ,
    点在 上, 设 ,
    , , ,
    , , , ,


    (3)解:当点D在y轴正半轴时,设 ,作 轴于点E,如图,


    解得: ,即 ;
    当点D在y轴负半轴时,设 ,如图,


    解得 ,即 ;
    ∴ 或 .
    【解析】【分析】(1)根据勾股定理可得AB的长,根据勾股定理可得CD的长,可得点B的坐标;
    (2)根据全等三角形的判定与性质,可得BE=OC=a,EC=OA=2a,根据勾股定理,可得a的长,可得A点坐标;
    (3)分类讨论:当点D在y轴正半轴时,当点D在y轴负半轴时,根据面积的和差,可得关于b的方程,根据解方程,可得答案。
     
     

    相关试卷

    2021年山东省烟台市八级上学期数学期中试卷:

    这是一份2021年山东省烟台市八级上学期数学期中试卷,共13页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    2021年山东省青岛市八级上学期数学期中试卷:

    这是一份2021年山东省青岛市八级上学期数学期中试卷,共17页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    2021年山东省济南市八级上学期数学期中试卷:

    这是一份2021年山东省济南市八级上学期数学期中试卷,共15页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2021年江西省抚州市八级上学期数学期中试卷
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map