数学12.2 三角形全等的判定精品一课一练
展开2021年人教版数学八年级上册
12.2《三角形全等的判定》同步练习卷
一、选择题
1.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于( )
A.∠EDB B.∠BED C.∠AFB D.2∠ABF
2.如图,已知AB=AC,AD=AE,∠BAC=∠DAE.下列结论不正确的有( )
A.∠BAD=∠CAE B.△ABD≌△ACE C.AB=BC D.BD=CE
3.下列判断中错误的是( )
A.有两角和一边对应相等的两个三角形全等
B.有两边和一角对应相等的两个三角形全等
C.有两边和其中一边上的中线对应相等的两个三角形全等
D.有一边对应相等的两个等边三角形全等
4.如图所示,已知AC=CD,∠B=∠E=90°,AC⊥CD,则不正确的结论是( )
A.∠A与∠D互为余角 B.∠A=∠2 C.△ABC≌△CED D.∠1=∠2
5.△ABC中,AB=7,AC=5,则中线AD之长的范围是( )
A.5<AD<7 B.1<AD<6 C.2<AD<12 D.2<AD<5
6.如图,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.
下面四个结论:
①∠ABE =∠BAD;②△CBE≌△ACD;③AB=CE;④AD-BE=DE.
其中正确的个数有( )
A.1个 B.2个 C.3个 D.4个
7.如图,在△ABC和△DEF中,已知AB=DE,BC=EF,根据(SAS)判定△ABC≌△DEF,还需的条件是( )
A.∠A=∠D B.∠B=∠E C.∠C=∠F D.以上三个均可以
8.如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是( )
A.∠A=∠C B.AD=CB C.BE=DF D.AD∥BC
9.如下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是( )
A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE
10.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是( )
A.SSS B.SAS C.AAS D.ASA
11.如图, OD⊥AB于点D,OE⊥AC于点E, 且OD=OE, 则△AOD与△AOE全等的理由是( )
A.SAS B.ASA C.SSS D.HL
12.如图,在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,那么在下列各条件中,不能判定Rt△ABC≌Rt△A′B′C′的是( )
A.AB=A′B′=5,BC=B′C′=3
B.AB=B′C′=5,∠A=∠B′=40°
C.AC=A′C′=5,BC=B′C′=3
D.AC=A′C′=5,∠A=∠A′=40°
二、填空题
13.如图,已知AD=AE,请你添加一个条件,使得△ADC≌△AEB,你添加的条件是 .
(不添加任何字母和辅助线)
14.如图,已知△ABC中,AB=AC,AD平分∠BAC,请补充完整过程,说明△ABD≌△ACD的理由.
∵AD平分∠BAC
∴∠ =∠ (角平分线的定义)
在△ABD和△ACD中
∴△ABD≌△ACD .
15.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带 去玻璃店.
16.如图,AB∥CD,AD∥BC,OE=OF,图中全等三角形共有 对.
17.如果Rt△ABC≌Rt△DEF,AC=DF=4,AB=7,∠C=∠F=90°,则DE= .
18.如图,MN∥PQ,AB⊥PQ,点A,D,B,C分别在直线MN和PQ上,点E在AB上,AD+BC=7,AD=EB,DE=EC,则AB= .
三、作图题
19.已知:∠AOB.
求作:∠A′O′B′,使得∠A′O′B′=∠AOB.
作法:
①以O为圆心,任意长为半径画弧,分别交OA,OB于点C,D;
②画一条射线O′A′,以点O′为圆心,OC长为半径画弧,交O′A′于点C′;
③以点C′为圆心,CD长为半径画弧,与第②步中所画的弧相交于点D′;
④过点D′画射线O′B′,则∠A′O′B′=∠AOB.
根据上面的作法,完成以下问题:
(1)使用直尺和圆规,作出∠A′O′B′(请保留作图痕迹).
(2)完成下面证明∠A′O′B′=∠AOB的过程(注:括号里填写推理的依据).
证明:由作法可知O′C′=OC,O′D′=OD,D′C′= ,
∴△C′O′D′≌△COD( )
∴∠A′O′B′=∠AOB.( )
四、解答题
20.如图,点B、E、C、F在同一直线上,BE=CF,AB=DE,AC=DF.
求证:AB∥DE.
21.如图,点E在CD上,BC与AE交于点F,AB=CB,BE=BD,∠1=∠2.
(1)求证:△ABE≌△CBD;
(2)证明:∠1=∠3.
22.课间,小明拿着老师的等腰直角三角尺玩,不小心掉到两堆砖块之间,如图所示.
(1)求证:△ADC≌△CEB;
(2)已知DE=35cm,请你帮小明求出砖块的厚度a的大小(每块砖的厚度相同).
23.如图,在四边形ABCD中,AB=AD,CA平分∠BCD,AE⊥BC于点E,AF⊥CD交CD的延长线于点F.求证:△ABE≌△ADF.
24.如图,△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求证:
(1)△AEF≌△CEB;
(2)AF=2CD.
参考答案
1.C
2.C
3.B
4.D.
5.B
6.C;
7.B
8.B
9.D
10.D
11.D.
12.B.
13.答案为:AB=AC或∠ADC=∠AEB或∠ABE=∠ACD.
14.解:∵AD平分∠BAC
∴∠BAD=∠CAD(角平分线的定义),
在△ABD和△ACD中,
,
∴△ABD≌△ACD(SAS).
15.答案为:③.
16.答案为:6.
17.答案为:7.
18.答案为:7.
19.解:(1)如图所示,∠A′O′B′即为所求;
(2)证明:由作法可知O′C′=OC,O′D′=OD,D′C′=DC,
∴△C′O′D′≌△COD(SSS)
∴∠A′O′B′=∠AOB.(全等三角形的对应角相等)
故答案为:DC,SSS,全等三角形的对应角相等.
20.证明:∵BE=CF,
∴BC=EF,
在△ABC和△DEF中,
,
∴△ABC≌△DEF(SSS),
∴∠B=∠DEF,
∴AB∥DE.
21.证明:(1)∵∠1=∠2,
∴∠1+∠CBE=∠2+∠CBE,即∠ABE=∠CBD,
在△ABE和△CBD中,
,
∴△ABE≌△CBD(SAS);
(2)∵△ABE≌△CBD,
∴∠A=∠C,
∵∠AFB=∠CFE,
∴∠1=∠3.
22.(1)证明:由题意得:
AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,
∴∠ADC=∠CEB=90°,
∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,
∴∠BCE=∠DAC,
在△ADC和△CEB中,
∠ADC=∠CEB,∠DAC=∠BCE,AC=BC
∴△ADC≌△CEB(AAS);
(2)解:由题意得:∵一块墙砖的厚度为a,
∴AD=4a,BE=3a,
由(1)得:△ADC≌△CEB,
∴DC=BE=3a,AD=CE=4a,
∴DC+CE=BE+AD=7a=42,
∴a=6,
答:砌墙砖块的厚度a为6cm.
23.证明:∵CA平分∠BCD,AE⊥BC,AF⊥CD,
∴AE=AF.
在Rt△ABE和Rt△ADF中,
∵
∴△ABE≌△ADF(HL).
24.(1)证明:由于AB=AC,故△ABC为等腰三角形,∠ABC=∠ACB;
∵AD⊥BC,CE⊥AB,
∴∠AEC=∠BEC=90°,∠ADB=90°;
∴∠BAD+∠ABC=90°,∠ECB+∠ABC=90°,
∴∠BAD=∠ECB,
在Rt△AEF和Rt△CEB中
∠AEF=∠CEB,AE=CE,∠EAF=∠ECB,
所以△AEF≌△CEB(ASA)
(2)∵△ABC为等腰三角形,AD⊥BC,
故BD=CD,即CB=2CD,
又∵△AEF≌△CEB,
∴AF=CB=2CD.
人教版八年级上册第十二章 全等三角形12.2 三角形全等的判定课堂检测: 这是一份人教版八年级上册第十二章 全等三角形12.2 三角形全等的判定课堂检测,共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
人教版八年级上册12.2 三角形全等的判定优秀练习题: 这是一份人教版八年级上册12.2 三角形全等的判定优秀练习题,共11页。
人教版八年级上册12.2 三角形全等的判定同步练习题: 这是一份人教版八年级上册12.2 三角形全等的判定同步练习题,共7页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。